Nezha
此模型仅处于维护模式,我们不接受任何更改其代码的新 PR。如果您在运行此模型时遇到任何问题,请重新安装最后一个支持此模型的版本:v4.40.2。您可以通过运行以下命令来执行此操作:pip install -U transformers==4.40.2
。
概述
Nezha 模型在 NEZHA: Neural Contextualized Representation for Chinese Language Understanding 中由 Junqiu Wei 等人提出。
论文摘要如下
预训练语言模型在各种自然语言理解(NLU)任务中取得了巨大成功,因为它能够通过在大规模语料库上进行预训练来捕获文本中的深度语境化信息。在本技术报告中,我们介绍了我们对中文语料库上进行预训练的语言模型 NEZHA(NEural contextualiZed representation for CHinese lAnguage understanding)的实践,以及对中文 NLU 任务的微调。当前版本的 NEZHA 基于 BERT,并包含一系列经过验证的改进,包括作为有效位置编码方案的功能相对位置编码、全词掩码策略、混合精度训练以及训练模型中的 LAMB 优化器。实验结果表明,NEZHA 在对几个具有代表性的中文任务(包括命名实体识别(人民日报 NER)、句子匹配(LCQMC)、中文情感分类(ChnSenti)和自然语言推理(XNLI))进行微调时,取得了最先进的性能。
此模型由 sijunhe 贡献。原始代码可以在 此处 找到。
资源
NezhaConfig
class transformers.NezhaConfig
< 源代码 >( vocab_size = 21128 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 max_relative_position = 64 type_vocab_size = 2 initializer_range = 0.02 layer_norm_eps = 1e-12 classifier_dropout = 0.1 pad_token_id = 0 bos_token_id = 2 eos_token_id = 3 use_cache = True **kwargs )
参数
- vocab_size (
int
,可选,默认值为 21128) — NEZHA 模型的词汇量。定义了可以由传递到 NezhaModel 的 forward 方法的 inputs_ids 表示的不同令牌。 - hidden_size (
int
, 可选,默认值为 768) — 编码器层和池化层的维度。 - num_hidden_layers (
int
, 可选,默认值为 12) — Transformer 编码器中的隐藏层数量。 - num_attention_heads (
int
, 可选,默认值为 12) — Transformer 编码器中每个注意力层的注意力头数量。 - intermediate_size (
int
, 可选,默认值为 3072) — Transformer 编码器中“中间”(即前馈)层的维度。 - hidden_act (
str
或function
, 可选,默认值为 “gelu”) — 编码器和池化器中的非线性激活函数(函数或字符串)。 - hidden_dropout_prob (
float
, 可选,默认值为 0.1) — 嵌入、编码器和池化器中所有全连接层的 dropout 概率。 - attention_probs_dropout_prob (
float
, 可选,默认值为 0.1) — 注意力概率的 dropout 比例。 - max_position_embeddings (
int
, 可选,默认值为 512) — 此模型可能用到的最大序列长度。通常将其设置为较大的值(例如,512 或 1024 或 2048)。 - type_vocab_size (
int
, 可选,默认值为 2) — 传入 NezhaModel 的 token_type_ids 的词汇量。 - initializer_range (
float
, 可选,默认值为 0.02) — 初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - is_decoder (
bool
, 可选, 默认为False
) — 模型是否用作解码器。如果为False
, 则模型用作编码器。
这是用于存储 NezhaModel 配置的配置类。它用于根据指定参数实例化 Nezha 模型,定义模型架构。使用默认值实例化配置将生成与 Nezha sijunhe/nezha-cn-base 架构类似的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。
示例
>>> from transformers import NezhaConfig, NezhaModel
>>> # Initializing an Nezha configuration
>>> configuration = NezhaConfig()
>>> # Initializing a model (with random weights) from the Nezha-base style configuration model
>>> model = NezhaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
NezhaModel
class transformers.NezhaModel
< 源代码 >( config add_pooling_layer = True )
参数
- config (NezhaConfig) — 模型配置类,包含模型的所有参数。使用配置文件进行初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
不带 Nezha 模型变压器的基本输出,不带任何特定的头部。
此模型继承自 PreTrainedModel。查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入大小、剪枝头等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以了解与一般用法和行为相关的所有事项。
该模型可以作为编码器(仅自注意力)以及解码器,在这种情况下,将在自注意力层之间添加一层交叉注意力,遵循 Ashish Vaswani、Noam Shazeer、Niki Parmar、Jakob Uszkoreit、Llion Jones、Aidan N. Gomez、Lukasz Kaiser 和 Illia Polosukhin 在 Attention is all you need 中描述的架构。
要充当解码器,模型需要使用设置为 True
的配置的 is_decoder
参数进行初始化。要在 Seq2Seq 模型中使用,模型需要使用 is_decoder
参数和设置为 True
的 add_cross_attention
初始化;然后,将 encoder_hidden_states
作为输入传递给正向传递。
正向
< 源代码 > ( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None past_key_values: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
形状为(batch_size, sequence_length)
) — 输入序列标记在词汇表中的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
形状为(batch_size, sequence_length)
,可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
内:- 1 代表 **未屏蔽** 的标记,
- 0 代表 **屏蔽** 的标记。
- token_type_ids (
torch.LongTensor
形状为(batch_size, sequence_length)
,可选) — 用于指示输入的第一部分和第二部分的段标记索引。索引选择在[0, 1]
内:- 0 代表 句子 A 标记,
- 1 代表 句子 B 标记。
- head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块的选定头部无效的掩码。掩码值选择在[0, 1]
内:- 1 代表 **未屏蔽** 的头部,
- 0 代表 **屏蔽** 的头部。
- inputs_embeds (
torch.FloatTensor
形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更有效地控制如何将input_ids
索引转换为关联向量,这将很有用。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - encoder_hidden_states (
torch.FloatTensor
形状为(batch_size, sequence_length, hidden_size)
,可选) — 编码器最后一层输出处的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。 - encoder_attention_mask (
torch.FloatTensor
形状为(batch_size, sequence_length)
,可选) — 用于避免在编码器输入的填充标记索引上执行注意力的掩码。如果模型配置为解码器,则此掩码在交叉注意力中使用。掩码值选择在[0, 1]
内:- 1 代表 **未屏蔽** 的标记,
- 0 代表 **屏蔽** 的标记。
- past_key_values (
tuple(tuple(torch.FloatTensor))
长度为config.n_layers
,每个元组包含 4 个形状为(batch_size, num_heads
- use_cache (
bool
, 可选) — 如果设置为True
,则返回past_key_values
键值状态,可用于加速解码(参见past_key_values
)。
返回
transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或 torch.FloatTensor
的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含取决于配置(NezhaConfig)和输入的各种元素。
-
last_hidden_state (
torch.FloatTensor
形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层的输出处的隐藏状态序列。 -
pooler_output (
torch.FloatTensor
形状为(batch_size, hidden_size)
) — 序列第一个 token(分类 token)的最后一层隐藏状态,经过用于辅助预训练任务的层的进一步处理。例如,对于 BERT 家族的模型,这将返回分类 token,经过线性层和 tanh 激活函数的处理。线性层权重在预训练期间从下一个句子预测(分类)目标中训练得到。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(一个用于嵌入的输出,如果模型具有嵌入层,+ 一个用于每一层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层的输出处的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
, 可选,当传递output_attentions=True
和config.add_cross_attention=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头的加权平均值。
-
past_key_values (
tuple(tuple(torch.FloatTensor))
, 可选,当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组具有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量,并且可选地,如果config.is_encoder_decoder=True
,则还有 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的附加张量。包含预计算的隐藏状态(自注意力块中的键和值,以及可选地,如果
config.is_encoder_decoder=True
,则包含交叉注意力块中的键和值),可以用来(参见past_key_values
输入)加速顺序解码。
The NezhaModel 正向方法,覆盖了 __call__
特殊方法。
尽管正向传递的配方需要在此函数中定义,但应该之后调用 Module
实例,而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, NezhaModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base")
>>> model = NezhaModel.from_pretrained("sijunhe/nezha-cn-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
NezhaForPreTraining
class transformers.NezhaForPreTraining
< 源代码 >( config )
参数
- config (NezhaConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
Nezha 模型,顶部有两个 head,如同在预训练期间一样:一个 masked language modeling
head 和一个 next sentence prediction (classification)
head。
此模型继承自 PreTrainedModel。查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入大小、剪枝头等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以了解与一般用法和行为相关的所有事项。
正向
< 源代码 > ( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None next_sentence_label: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.models.deprecated.nezha.modeling_nezha.NezhaForPreTrainingOutput
或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
形状为(batch_size, sequence_length)
,可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值在[0, 1]
中选择:- 1 表示未被掩盖的标记,
- 0 表示被掩盖的标记。
- token_type_ids (
torch.LongTensor
形状为(batch_size, sequence_length)
,可选) — 用于指示输入的第一部分和第二部分的段标记索引。索引在[0, 1]
中选择:- 0 对应于句子 A 标记,
- 1 对应于句子 B 标记。
- head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块的选定头部无效的掩码。掩码值在[0, 1]
中选择:- 1 表示未被掩盖的头部,
- 0 表示被掩盖的头部。
- inputs_embeds (
torch.FloatTensor
形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入式表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为关联向量(而不是模型的内部嵌入查找矩阵)有更多控制,这将很有用。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关详细信息,请参阅返回张量中的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关详细信息,请参阅返回张量中的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。labels (
torch.LongTensor
形状为(batch_size, sequence_length)
,可选): 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]
中(参见input_ids
文档字符串)。索引设置为-100
的标记将被忽略(掩盖),损失仅针对标签在[0, ..., config.vocab_size]
中的标记进行计算 next_sentence_label (torch.LongTensor
形状为(batch_size,)
,可选): 用于计算下一个序列预测(分类)损失的标签。输入应为序列对(参见input_ids
文档字符串)。索引应在[0, 1]
中:- 0 表示序列 B 是序列 A 的延续,
- 1 表示序列 B 是随机序列。
Dict[str, any]
,可选,默认为 {}): 用于隐藏已被弃用的旧参数。
返回
transformers.models.deprecated.nezha.modeling_nezha.NezhaForPreTrainingOutput
或 tuple(torch.FloatTensor)
一个 transformers.models.deprecated.nezha.modeling_nezha.NezhaForPreTrainingOutput
或一个 torch.FloatTensor
元组(如果传递 return_dict=False
或 config.return_dict=False
时),包括根据配置 (NezhaConfig) 和输入的不同元素。
-
loss (可选,在提供
labels
时返回,torch.FloatTensor
形状为(1,)
) — 作为掩码语言建模损失和下一个序列预测(分类)损失之和的总损失。 -
prediction_logits (
torch.FloatTensor
形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。 -
seq_relationship_logits (
torch.FloatTensor
形状为(batch_size, 2)
) — 下一个序列预测(分类)头的预测分数(SoftMax 之前真/假延续的分数)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,在传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(一个用于嵌入的输出,一个用于每一层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出以及初始嵌入输出时的隐藏状态。
-
attentions (
tuple(torch.FloatTensor)
, 可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头的加权平均值。
The NezhaForPreTraining forward 方法,重写了 __call__
特殊方法。
尽管正向传递的配方需要在此函数中定义,但应该之后调用 Module
实例,而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, NezhaForPreTraining
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base")
>>> model = NezhaForPreTraining.from_pretrained("sijunhe/nezha-cn-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits
NezhaForMaskedLM
class transformers.NezhaForMaskedLM
< source >( config )
参数
- config (NezhaConfig) — 模型配置类,包含模型的所有参数。 使用配置文件初始化不会加载与模型关联的权重,只会加载配置。 查看 from_pretrained() 方法加载模型权重。
带有语言建模
头的 Nezha 模型。
此模型继承自 PreTrainedModel。查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入大小、剪枝头等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以了解与一般用法和行为相关的所有事项。
正向
< source > ( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.MaskedLMOutput or tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。索引可以使用 AutoTokenizer 获取。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 。
- attention_mask (
torch.FloatTensor
形状为(batch_size, sequence_length)
, 可选) — 掩码以避免对填充标记索引执行注意力。 在[0, 1]
中选择掩码值:- 1 表示 未掩码 的标记,
- 0 表示 掩码 的标记。
- token_type_ids (
torch.LongTensor
形状为(batch_size, sequence_length)
, 可选) — 段标记索引,指示输入的第一部分和第二部分。 索引在[0, 1]
中选择:- 0 对应于 句子 A 标记,
- 1 对应于 句子 B 标记。
- head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 掩码以使自注意力模块的选定头无效。 在[0, 1]
中选择掩码值:- 1 表示头 未掩码,
- 0 表示头 掩码。
- inputs_embeds (
torch.FloatTensor
形状为(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,而不是传递input_ids
,您可以选择直接传递嵌入表示。如果您想更精确地控制如何将input_ids
索引转换为关联的向量,而不是模型的内部嵌入查找矩阵,这将很有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关详细信息,请参阅返回张量中的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关详细信息,请参阅返回张量中的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。 - labels (
torch.LongTensor
形状为(batch_size, sequence_length)
, 可选) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]
中(参见input_ids
文档字符串) 索引设置为-100
的标记将被忽略(掩码),损失仅针对标签在[0, ..., config.vocab_size]
中的标记计算。
返回
transformers.modeling_outputs.MaskedLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MaskedLMOutput 或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或者当 config.return_dict=False
时),包含取决于配置 (NezhaConfig) 和输入的各种元素。
-
loss (
torch.FloatTensor
形状为(1,)
, 可选, 当提供labels
时返回) — 掩码语言建模 (MLM) 损失。 -
logits (
torch.FloatTensor
形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(一个用于嵌入的输出,如果模型具有嵌入层,+ 一个用于每一层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层的输出处的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头的加权平均值。
The NezhaForMaskedLM 正向方法,覆盖了 __call__
特殊方法。
尽管正向传递的配方需要在此函数中定义,但应该之后调用 Module
实例,而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, NezhaForMaskedLM
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base")
>>> model = NezhaForMaskedLM.from_pretrained("sijunhe/nezha-cn-base")
>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # retrieve index of [MASK]
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-[MASK] tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
>>> outputs = model(**inputs, labels=labels)
NezhaForNextSentencePrediction
class transformers.NezhaForNextSentencePrediction
< source >( config )
参数
- config (NezhaConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法加载模型权重。
带有 下一个句子预测 (分类)
头的 Nezha 模型。
此模型继承自 PreTrainedModel。查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入大小、剪枝头等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以了解与一般用法和行为相关的所有事项。
正向
< source > ( input_ids: 可选 = None attention_mask: 可选 = None token_type_ids: 可选 = None head_mask: 可选 = None inputs_embeds: 可选 = None labels: 可选 = None output_attentions: 可选 = None output_hidden_states: 可选 = None return_dict: 可选 = None **kwargs ) → transformers.modeling_outputs.NextSentencePredictorOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
形状为(batch_size, sequence_length)
) — 输入序列标记在词汇表中的索引。可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 获取详细信息。
- attention_mask (
torch.FloatTensor
形状为(batch_size, sequence_length)
, 可选) — 掩码以避免对填充标记索引执行注意力。掩码值选择在[0, 1]
中:- 1 代表 **未被掩码** 的标记,
- 0 代表 **被掩码** 的标记。
- token_type_ids (
torch.LongTensor
形状为(batch_size, sequence_length)
, 可选) — 分段标记索引,用于指示输入的第一部分和第二部分。索引选择在[0, 1]
中:- 0 代表 句子 A 标记,
- 1 代表 句子 B 标记。
- head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 掩码以使自注意力模块的选定头部无效。掩码值选择在[0, 1]
中:- 1 代表 **未被掩码** 的头部,
- 0 代表 **被掩码** 的头部。
- inputs_embeds (
torch.FloatTensor
形状为(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,而不是传递input_ids
,您可以选择直接传递嵌入表示。如果您想更多地控制如何将input_ids
索引转换为关联的向量,而不是模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。查看返回张量中的attentions
了解详细信息。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。查看返回张量中的hidden_states
了解详细信息。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个简单的元组。
一个 transformers.modeling_outputs.NextSentencePredictorOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或 config.return_dict=False
),包含根据配置 (NezhaConfig) 和输入的不同元素。
-
loss (
torch.FloatTensor
of shape(1,)
, 可选, 当提供next_sentence_label
时返回) — 下一句预测(分类)损失。 -
logits (
torch.FloatTensor
of shape(batch_size, 2)
) — 下一句预测(分类)头部的预测分数(SoftMax 之前的 True/False 延续分数)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(一个用于嵌入的输出,如果模型具有嵌入层,+ 一个用于每一层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层的输出处的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头的加权平均值。
NezhaForNextSentencePrediction 的 forward 方法重写了 __call__
特殊方法。
尽管正向传递的配方需要在此函数中定义,但应该之后调用 Module
实例,而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, NezhaForNextSentencePrediction
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base")
>>> model = NezhaForNextSentencePrediction.from_pretrained("sijunhe/nezha-cn-base")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
>>> logits = outputs.logits
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random
NezhaForSequenceClassification
class transformers.NezhaForSequenceClassification
< 源代码 >( config )
参数
- config (NezhaConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法来加载模型权重。
Nezha 模型转换器,在顶部有一个序列分类/回归头(在池化输出之上有一个线性层),例如用于 GLUE 任务。
此模型继承自 PreTrainedModel。查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入大小、剪枝头等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以了解与一般用法和行为相关的所有事项。
正向
< 源代码 > ( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.SequenceClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, 可选) — 掩码以避免对填充标记索引执行注意力。掩码值在[0, 1]
中选择:- 1 表示未掩码的标记,
- 0 表示掩码的标记。
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, 可选) — 分段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于句子 A 标记,
- 1 对应于句子 B 标记。
- head_mask (
torch.FloatTensor
of shape(num_heads,)
或(num_layers, num_heads)
, 可选) — 掩码以使自注意力模块的选定头部无效。掩码值在[0, 1]
中选择:- 1 表示头部未掩码,
- 0 表示头部掩码。
- inputs_embeds (
torch.FloatTensor
形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更细致地控制如何将input_ids
索引转换为相关的向量,而不是模型内部的嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关详细信息,请参阅返回张量中的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关详细信息,请参阅返回张量中的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - labels (
torch.LongTensor
形状为(batch_size,)
,可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
中。如果config.num_labels == 1
,则计算回归损失(均方损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。
返回
transformers.modeling_outputs.SequenceClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.SequenceClassifierOutput 或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或者当 config.return_dict=False
时),包含根据配置 (NezhaConfig) 和输入的不同元素。
-
loss (
torch.FloatTensor
形状为(1,)
,可选,当提供labels
时返回) — 分类(或者如果config.num_labels==1
则为回归)损失。 -
logits (
torch.FloatTensor
形状为(batch_size, config.num_labels)
) — 分类(或者如果config.num_labels==1
则为回归)分数(在 SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(一个用于嵌入的输出,如果模型具有嵌入层,+ 一个用于每一层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层的输出处的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头的加权平均值。
NezhaForSequenceClassification 正向方法,覆盖 __call__
特殊方法。
尽管正向传递的配方需要在此函数中定义,但应该之后调用 Module
实例,而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
单标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, NezhaForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base")
>>> model = NezhaForSequenceClassification.from_pretrained("sijunhe/nezha-cn-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = NezhaForSequenceClassification.from_pretrained("sijunhe/nezha-cn-base", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
多标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, NezhaForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base")
>>> model = NezhaForSequenceClassification.from_pretrained("sijunhe/nezha-cn-base", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = NezhaForSequenceClassification.from_pretrained(
... "sijunhe/nezha-cn-base", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
NezhaForMultipleChoice
class transformers.NezhaForMultipleChoice
< source >( config )
参数
- config (NezhaConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法加载模型权重。
Nezha 模型,顶部带有多项选择分类头部(池化输出顶部的线性层和 softmax),例如用于 RocStories/SWAG 任务。
此模型继承自 PreTrainedModel。查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入大小、剪枝头等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以了解与一般用法和行为相关的所有事项。
正向
< source > ( input_ids: 可选 = None attention_mask: 可选 = None token_type_ids: 可选 = None head_mask: 可选 = None inputs_embeds: 可选 = None labels: 可选 = None output_attentions: 可选 = None output_hidden_states: 可选 = None return_dict: 可选 = None ) → transformers.modeling_outputs.MultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
形状为(batch_size, num_choices, sequence_length)
) — 输入序列 token 在词汇表中的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
形状为(batch_size, num_choices, sequence_length)
, 可选) — 掩码以避免对填充 token 索引执行注意力。掩码值选择在[0, 1]
中:- 1 表示未掩码的 token,
- 0 表示掩码的 token。
- token_type_ids (
torch.LongTensor
形状为(batch_size, num_choices, sequence_length)
, 可选) — 段 token 索引,用于指示输入的第一部分和第二部分。索引选择在[0, 1]
中:- 0 对应于句子 A token,
- 1 对应于句子 B token。
- head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 掩码以使自注意力模块的选定头无效。掩码值选择在[0, 1]
中:- 1 表示头未掩码,
- 0 表示头被掩码。
- inputs_embeds (
torch.FloatTensor
形状为(batch_size, num_choices, sequence_length, hidden_size)
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想对如何将input_ids
索引转换为关联向量进行更多控制,这很有用,而不是模型的内部嵌入查找矩阵。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关详细信息,请参阅返回张量中的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关详细信息,请参阅返回张量中的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。 - labels (
torch.LongTensor
形状为(batch_size,)
,可选) — 用于计算多选分类损失的标签。索引应在[0, ..., num_choices-1]
中,其中num_choices
是输入张量的第二维的大小。(参见上面的input_ids
)
返回
transformers.modeling_outputs.MultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MultipleChoiceModelOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含根据配置(NezhaConfig) 和输入的不同元素。
-
loss (
torch.FloatTensor
形状为 (1,),可选,在提供labels
时返回) — 分类损失。 -
logits (
torch.FloatTensor
形状为(batch_size, num_choices)
) — num_choices 是输入张量的第二维的大小。(参见上面的 input_ids)。分类分数(在 SoftMax 之前)。
-
hidden_states (
tuple(torch.FloatTensor)
, 可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(一个用于嵌入的输出,如果模型具有嵌入层,+ 一个用于每一层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层的输出处的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头的加权平均值。
The NezhaForMultipleChoice forward 方法,覆盖了 __call__
特殊方法。
尽管正向传递的配方需要在此函数中定义,但应该之后调用 Module
实例,而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, NezhaForMultipleChoice
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base")
>>> model = NezhaForMultipleChoice.from_pretrained("sijunhe/nezha-cn-base")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels) # batch size is 1
>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits
NezhaForTokenClassification
class transformers.NezhaForTokenClassification
< source >( config )
参数
- config (NezhaConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained() 方法加载模型权重。
Nezha 模型,顶部带有令牌分类头(隐藏状态输出顶部的线性层),例如,用于命名实体识别(NER)任务。
此模型继承自 PreTrainedModel。查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入大小、剪枝头等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以了解与一般用法和行为相关的所有事项。
正向
< source > ( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
形状为(batch_size, sequence_length)
) — 输入序列令牌在词汇表中的索引。索引可以通过 AutoTokenizer 获取。查看 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 以了解详细信息。
- attention_mask (
torch.FloatTensor
形状为(batch_size, sequence_length)
,可选) — 掩码,避免对填充令牌索引执行注意力。掩码值在[0, 1]
中选择:- 1 用于未掩码的令牌。
- 0 用于掩码的令牌。
- token_type_ids (
torch.LongTensor
形状为(batch_size, sequence_length)
,可选) — 段令牌索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于句子 A 令牌。
- 1 对应于句子 B 令牌。
- head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于将自注意力模块中选定的头部置为零的掩码。掩码值在[0, 1]
中选择:- 1 表示头部没有被掩盖,
- 0 表示头部被掩盖。
- inputs_embeds (
torch.FloatTensor
形状为(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为关联向量(而不是模型的内部嵌入查找矩阵)有更多控制权,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关详细信息,请参阅返回张量中的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关详细信息,请参阅返回张量中的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput,而不是一个简单的元组。 - labels (
torch.LongTensor
形状为(batch_size, sequence_length)
, 可选) — 用于计算令牌分类损失的标签。索引应该在[0, ..., config.num_labels - 1]
中。
返回
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含取决于配置 (NezhaConfig) 和输入的各种元素。
-
loss (
torch.FloatTensor
形状为(1,)
, 可选, 当提供labels
时返回) — 分类损失。 -
logits (
torch.FloatTensor
形状为(batch_size, sequence_length, config.num_labels)
) — 分类分数(在 SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(一个用于嵌入的输出,如果模型具有嵌入层,+ 一个用于每一层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层的输出处的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头的加权平均值。
The NezhaForTokenClassification forward method, overrides the __call__
special method.
尽管正向传递的配方需要在此函数中定义,但应该之后调用 Module
实例,而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, NezhaForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base")
>>> model = NezhaForTokenClassification.from_pretrained("sijunhe/nezha-cn-base")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
NezhaForQuestionAnswering
class transformers.NezhaForQuestionAnswering
< source >( config )
参数
- config (NezhaConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
Nezha 模型,顶部带有跨度分类头,用于抽取式问答任务,例如 SQuAD(在隐藏状态输出之上添加线性层以计算 span start logits
和 span end logits
)。
此模型继承自 PreTrainedModel。查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入大小、剪枝头等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以了解与一般用法和行为相关的所有事项。
NezhaForQuestionAnswering 的 forward 方法重写了 __call__
特殊方法。
尽管正向传递的配方需要在此函数中定义,但应该之后调用 Module
实例,而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, NezhaForQuestionAnswering
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base")
>>> model = NezhaForQuestionAnswering.from_pretrained("sijunhe/nezha-cn-base")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss