GIT
概述
GIT 模型由 Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang 在 GIT: A Generative Image-to-text Transformer for Vision and Language 中提出。GIT 是一种仅解码器的 Transformer,它利用 CLIP 的视觉编码器来根据视觉输入(除了文本)调节模型。该模型在图像描述和视觉问答基准测试中获得了最先进的结果。
论文的摘要如下:
在本文中,我们设计和训练了一个生成式图像到文本转换器 GIT,以统一视觉语言任务,例如图像/视频描述和问题回答。虽然生成模型在预训练和微调之间提供了Consistent的网络架构,但现有工作通常包含复杂的结构(单/多模态编码器/解码器),并依赖于外部模块,例如对象检测器/标注器和光学字符识别(OCR)。在 GIT 中,我们将架构简化为一个图像编码器和一个文本解码器,置于单个语言建模任务下。我们还扩大了预训练数据和模型大小,以提高模型性能。我们的 GIT 没有花哨的功能,在 12 个具有挑战性的基准测试中以大幅优势确立了新的最先进水平。例如,我们的模型首次在 TextCaps 上超越了人类的表现(CIDEr 中为 138.2 对 125.5)。此外,我们提出了一种新的基于生成的图像分类和场景文本识别方案,在标准基准测试中取得了不错的性能。

使用技巧
- GIT 的实现方式与 GPT-2 非常相似,唯一的区别是该模型还以
pixel_values
为条件。
资源
官方 Hugging Face 和社区(🌎 表示)资源列表,可帮助您开始使用 GIT。
- 关于在自定义数据上进行推理 + 微调 GIT 的演示笔记本可以在这里找到。
- 另请参阅:因果语言建模任务指南
如果您有兴趣提交资源以包含在此处,请随时打开拉取请求,我们将对其进行审核。理想情况下,该资源应展示一些新的内容,而不是重复现有资源。
GitVisionConfig
class transformers.GitVisionConfig
< source >( hidden_size = 768 intermediate_size = 3072 num_hidden_layers = 12 num_attention_heads = 12 num_channels = 3 image_size = 224 patch_size = 16 hidden_act = 'quick_gelu' layer_norm_eps = 1e-05 attention_dropout = 0.0 initializer_range = 0.02 **kwargs )
参数
- hidden_size (
int
, 可选,默认为 768) — 编码器层和池化层的维度。 - intermediate_size (
int
, 可选,默认为 3072) — Transformer 编码器中“中间”(即,前馈)层的维度。 - num_hidden_layers (
int
, 可选,默认为 12) — Transformer 编码器中隐藏层的数量。 - num_attention_heads (
int
, 可选,默认为 12) — Transformer 编码器中每个注意力层的注意力头数。 - image_size (
int
, 可选,默认为 224) — 每张图片的大小(分辨率)。 - patch_size (
int
, 可选,默认为 16) — 每个图像块的大小(分辨率)。 - hidden_act (
str
或function
, 可选,默认为"quick_gelu"
) — 编码器和池化器中的非线性激活函数(函数或字符串)。如果为字符串,则支持"gelu"
,"relu"
,"selu"
和"gelu_new"
"quick_gelu"
。 - layer_norm_eps (
float
, 可选,默认为 1e-5) — 层归一化层使用的 epsilon 值。 - attention_dropout (
float
, 可选,默认为 0.0) — 注意力概率的 dropout 比率。 - initializer_range (
float
, 可选,默认为 0.02) — 用于初始化所有权重矩阵的截断正态分布初始化器的标准差。
这是用于存储 GitVisionModel 配置的配置类。它用于根据指定的参数实例化 GIT 视觉编码器,从而定义模型架构。使用默认值实例化配置将产生与 GIT microsoft/git-base 架构的视觉编码器类似的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。
示例
>>> from transformers import GitVisionConfig, GitVisionModel
>>> # Initializing a GitVisionConfig with microsoft/git-base style configuration
>>> configuration = GitVisionConfig()
>>> # Initializing a GitVisionModel (with random weights) from the microsoft/git-base style configuration
>>> model = GitVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
GitVisionModel
class transformers.GitVisionModel
< source >( config: GitVisionConfig )
参数
- config (GitConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
CLIP 中的视觉模型,用于 GIT,顶部没有任何头或投影。
此模型继承自 PreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档了解与一般用法和行为相关的所有事项。
forward
< source >( pixel_values: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.BaseModelOutput 或 tuple(torch.FloatTensor)
参数
- pixel_values (
torch.FloatTensor
,形状为(batch_size, num_channels, height, width)
) — 像素值。如果您提供填充,默认情况下将忽略填充。像素值可以使用 AutoImageProcessor 获得。详见 CLIPImageProcessor.call()。 - output_attentions (
bool
, optional) — 是否返回所有注意力层的注意力张量。 详见返回张量下的attentions
。 - output_hidden_states (
bool
, optional) — 是否返回所有层的隐藏状态。 详见返回张量下的hidden_states
。 - return_dict (
bool
, optional) — 是否返回 ModelOutput 而不是普通的元组。
Returns
transformers.modeling_outputs.BaseModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.BaseModelOutput 或 torch.FloatTensor
的元组 (如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (<class 'transformers.models.git.configuration_git.GitVisionConfig'>
) 和输入。
-
last_hidden_state (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层的输出处的隐藏状态序列。 -
hidden_states (
tuple(torch.FloatTensor)
, optional, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组 (如果模型具有嵌入层,则为嵌入层的输出 + 每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出以及可选的初始嵌入输出处的隐藏状态。
-
attentions (
tuple(torch.FloatTensor)
, optional, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组 (每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
GitVisionModel forward 方法,覆盖了 __call__
特殊方法。
虽然 forward 传递的配方需要在该函数中定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
Examples
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, GitVisionModel
>>> processor = AutoProcessor.from_pretrained("microsoft/git-base")
>>> model = GitVisionModel.from_pretrained("microsoft/git-base")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
GitConfig
class transformers.GitConfig
< source >( vision_config = None vocab_size = 30522 hidden_size = 768 num_hidden_layers = 6 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 1024 initializer_range = 0.02 layer_norm_eps = 1e-12 pad_token_id = 0 position_embedding_type = 'absolute' use_cache = True tie_word_embeddings = False bos_token_id = 101 eos_token_id = 102 num_image_with_embedding = None **kwargs )
参数
- vision_config (
dict
, optional) — 用于初始化 GitVisionConfig 的配置选项字典。 - vocab_size (
int
, optional, defaults to 30522) — GIT 模型的词汇表大小。 定义了调用 GitModel 时传递的inputs_ids
可以表示的不同 token 的数量。 - hidden_size (
int
, optional, defaults to 768) — 编码器层和池化器层的维度。 - num_hidden_layers (
int
, optional, defaults to 6) — Transformer 编码器中隐藏层的数量。 - num_attention_heads (
int
, optional, defaults to 12) — Transformer 编码器中每个注意力层的注意力头数。 - intermediate_size (
int
, optional, defaults to 3072) — Transformer 编码器中“中间”层(通常称为前馈层)的维度。 - hidden_act (
str
或Callable
, optional, defaults to"gelu"
) — 编码器和池化器中的非线性激活函数(函数或字符串)。 如果是字符串,则支持"gelu"
、"relu"
、"silu"
和"gelu_new"
。 - hidden_dropout_prob (
float
, optional, defaults to 0.1) — 嵌入、编码器和池化器中所有全连接层的 dropout 概率。 - attention_probs_dropout_prob (
float
, optional, defaults to 0.1) — 注意力概率的 dropout 比率。 - max_position_embeddings (
int
, optional, defaults to 1024) — 此模型可能使用的最大序列长度。 通常将其设置为较大的值以防万一(例如,512 或 1024 或 2048)。 - initializer_range (
float
, optional, defaults to 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - layer_norm_eps (
float
, optional, defaults to 1e-12) — 层归一化层使用的 epsilon 值。 - position_embedding_type (
str
, optional, defaults to"absolute"
) — 位置嵌入的类型。 选择"absolute"
、"relative_key"
、"relative_key_query"
之一。 对于位置嵌入,请使用"absolute"
。 有关"relative_key"
的更多信息,请参阅 Self-Attention with Relative Position Representations (Shaw et al.)。 有关"relative_key_query"
的更多信息,请参阅 Improve Transformer Models with Better Relative Position Embeddings (Huang et al.) 中的方法 4 。 - use_cache (
bool
, optional, defaults toTrue
) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。 - num_image_with_embedding (
int
, optional) — 要添加的时间嵌入的数量,以防模型用于视频字幕/VQA。
这是用于存储 GitModel 配置的配置类。 它用于根据指定的参数实例化 GIT 模型,定义模型架构。 使用默认值实例化配置将产生与 GIT microsoft/git-base 架构类似的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。
Examples
>>> from transformers import GitConfig, GitModel
>>> # Initializing a GIT microsoft/git-base style configuration
>>> configuration = GitConfig()
>>> # Initializing a model (with random weights) from the microsoft/git-base style configuration
>>> model = GitModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
GitProcessor
class transformers.GitProcessor
< source >( image_processor tokenizer )
参数
- image_processor (AutoImageProcessor) — 图像处理器是必需的输入。
- tokenizer (AutoTokenizer) — 分词器是必需的输入。
构建一个 GIT 处理器,它将 CLIP 图像处理器和 BERT 分词器包装到单个处理器中。
GitProcessor 提供 CLIPImageProcessor 和 BertTokenizerFast 的所有功能。 有关更多信息,请参阅 call() 和 decode()
。
__call__
< source >( images: Union = None text: Union = None audio = None videos = None **kwargs: Unpack ) → BatchFeature
参数
- images (
PIL.Image.Image
,np.ndarray
,torch.Tensor
,List[PIL.Image.Image]
,List[np.ndarray]
,List[torch.Tensor]
) — 要准备的图像或图像批次。每张图像可以是 PIL 图像、NumPy 数组或 PyTorch 张量。支持通道优先和通道在后格式。 - text (
TextInput
,PreTokenizedInput
,List[TextInput]
,List[PreTokenizedInput]
, optional) — 要编码的序列或序列批次。每个序列可以是字符串或字符串列表(预分词字符串)。如果序列以字符串列表(预分词)形式提供,则必须设置is_split_into_words=True
(以消除与序列批次的歧义)。 - return_tensors (
str
或 TensorType, optional) — 如果设置,将返回特定框架的张量。可接受的值为:'tf'
:返回 TensorFlowtf.constant
对象。'pt'
:返回 PyTorchtorch.Tensor
对象。'np'
:返回 NumPynp.ndarray
对象。'jax'
:返回 JAXjnp.ndarray
对象。
Returns
一个包含以下字段的 BatchFeature
- input_ids — 要馈送到模型的 token id 列表。当
text
不是None
时返回。 - attention_mask — 指定模型应关注哪些 token 的索引列表(当
return_attention_mask=True
或如果 “attention_mask” 在self.model_input_names
中,且text
不是None
时)。 - pixel_values — 要馈送到模型的像素值。当
images
不是None
时返回。
准备模型的一个或多个序列和图像的主要方法。如果 text
不是 None
,此方法将 text
和 kwargs
参数转发到 BertTokenizerFast 的 call() 以编码文本。要准备图像,如果 images
不是 None
,此方法将 images
和 kwrags
参数转发到 CLIPImageProcessor 的 call()。有关更多信息,请参阅上述两种方法的 doctsring。
GitModel
class transformers.GitModel
< source >( config )
参数
- config (GitConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
裸 GIT 模型转换器,由 CLIP 图像编码器和文本解码器组成,输出原始隐藏状态,顶部没有任何特定的 head。
此模型继承自 PreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档了解与一般用法和行为相关的所有事项。
forward
< source >( input_ids: Optional = None attention_mask: Optional = None position_ids: Optional = None pixel_values: Optional = None head_mask: Optional = None inputs_embeds: Optional = None past_key_values: Union = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.BaseModelOutputWithPooling 或 tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
) — 词汇表中输入序列 token 的索引。索引可以使用 AutoTokenizer 获得。 请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 了解详细信息。
- attention_mask (形状为
(batch_size, sequence_length)
的torch.FloatTensor
, optional) — 避免对 padding token 索引执行 attention 的掩码。掩码值在[0, 1]
中选择:- 1 表示 token 未被掩盖,
- 0 表示 token 被掩盖。
- position_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
, optional) — 每个输入序列 token 在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - pixel_values (形状为
(batch_size, num_channels, height, width)
的torch.FloatTensor
) — 像素值。像素值可以使用 AutoImageProcessor 获得。 请参阅 CLIPImageProcessor.call() 了解详细信息。 - head_mask (形状为
(num_heads,)
或(num_layers, num_heads)
的torch.FloatTensor
, optional) — 用于使 self-attention 模块的选定 head 无效的掩码。掩码值在[0, 1]
中选择:- 1 表示 head 未被掩盖,
- 0 表示 head 被掩盖。
- inputs_embeds (形状为
(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更灵活地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
, optional) — 预先计算的隐藏状态(self-attention 块和 cross-attention 块中的键和值),可用于加速顺序解码。这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组具有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
) 的张量。这也称为旧版缓存格式。
模型将输出与作为输入馈送的缓存格式相同的格式。如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,则用户可以选择仅输入形状为(batch_size, 1)
的最后一个input_ids
(那些没有将其过去的键值状态提供给此模型的input_ids
),而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - output_attentions (
bool
, optional) — 是否返回所有 attention 层的 attention 张量。 有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, optional) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, optional) — 是否返回 ModelOutput 而不是普通元组。 - use_cache (
bool
, optional) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(请参阅past_key_values
)。
Returns
transformers.modeling_outputs.BaseModelOutputWithPooling 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.BaseModelOutputWithPooling 或 torch.FloatTensor
的元组(如果传递 return_dict=False
或当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (GitConfig) 和输入。
-
last_hidden_state (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层的输出处的隐藏状态序列。 -
pooler_output (形状为
(batch_size, hidden_size)
的torch.FloatTensor
) — 序列的第一个 token(分类 token)的最后一层隐藏状态,在通过用于辅助预训练任务的层进一步处理后。 例如,对于 BERT 系列模型,这返回通过线性层和 tanh 激活函数处理后的分类 token。线性层权重从预训练期间的下一句预测(分类)目标中训练而来。 -
hidden_states (
tuple(torch.FloatTensor)
, optional, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组 (如果模型具有嵌入层,则为嵌入层的输出 + 每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出以及可选的初始嵌入输出处的隐藏状态。
-
attentions (
tuple(torch.FloatTensor)
, optional, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组 (每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
GitModel forward 方法,覆盖了 __call__
特殊方法。
虽然 forward 传递的配方需要在该函数中定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
Examples
>>> from transformers import AutoProcessor, AutoModel
>>> import requests
>>> from PIL import Image
>>> processor = AutoProcessor.from_pretrained("microsoft/git-base")
>>> model = AutoModel.from_pretrained("microsoft/git-base")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> text = "this is an image of two cats"
>>> inputs = processor(images=image, text=text, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
GitForCausalLM
class transformers.GitForCausalLM
< source >( config )
参数
- config (GitConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
GIT 模型,顶部带有一个用于自回归语言建模的 language modeling
head。
此模型继承自 PreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档了解与一般用法和行为相关的所有事项。
forward
< source >( input_ids: 可选 = None attention_mask: 可选 = None position_ids: 可选 = None pixel_values: 可选 = None head_mask: 可选 = None inputs_embeds: 可选 = None labels: 可选 = None past_key_values: 联合类型 = None use_cache: 可选 = None output_attentions: 可选 = None output_hidden_states: 可选 = None return_dict: 可选 = None ) → transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。可以使用 AutoTokenizer 获取索引。 请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 以获取详细信息。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在 padding token 索引上执行 attention 的掩码。 掩码值在[0, 1]
中选择:- 1 表示 tokens 未被掩盖,
- 0 表示 tokens 被掩盖。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列 tokens 的位置索引。 在范围[0, config.max_position_embeddings - 1]
中选择。 - pixel_values (
torch.FloatTensor
,形状为(batch_size, num_channels, height, width)
) — 像素值。 像素值可以使用 AutoImageProcessor 获取。 请参阅 CLIPImageProcessor.call() 以获取详细信息。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于置空 self-attention 模块中选定 head 的掩码。 掩码值在[0, 1]
中选择:- 1 表示 head 未被掩盖,
- 0 表示 head 被掩盖。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联向量,这将非常有用。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
,可选) — 预先计算的隐藏状态(self-attention 模块和 cross-attention 模块中的键和值),可用于加速顺序解码。 这通常包括在解码的先前阶段由模型返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组具有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。 这也称为旧版缓存格式。
模型将输出与作为输入馈送的缓存格式相同的格式。 如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,则用户可以选择仅输入最后input_ids
(那些没有将其过去键值状态提供给此模型的)形状为(batch_size, 1)
而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - output_attentions (
bool
,可选) — 是否返回所有 attention 层的 attention 张量。 有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算从左到右语言建模损失(下一个单词预测)的标签。 索引应为[-100, 0, ..., config.vocab_size]
(参见input_ids
文档字符串) 索引设置为-100
的 Tokens 将被忽略(掩盖),损失仅针对标签为 n[0, ..., config.vocab_size]
的 tokens 计算 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,并且可以用于加速解码(请参阅past_key_values
)。
Returns
transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.CausalLMOutputWithPast 或 torch.FloatTensor
的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (GitConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 语言建模损失(用于下一个 token 预测)。 -
logits (
torch.FloatTensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模 head 的预测分数(SoftMax 之前每个词汇表 token 的分数)。 -
past_key_values (
tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组具有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)包含预先计算的隐藏状态(self-attention 模块中的键和值),可以用于(参见
past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(torch.FloatTensor)
, optional, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组 (如果模型具有嵌入层,则为嵌入层的输出 + 每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出以及可选的初始嵌入输出处的隐藏状态。
-
attentions (
tuple(torch.FloatTensor)
, optional, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组 (每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
GitForCausalLM 前向传播方法,覆盖了 __call__
特殊方法。
虽然 forward 传递的配方需要在该函数中定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
Examples
图像字幕示例
>>> from transformers import AutoProcessor, AutoModelForCausalLM
>>> import requests
>>> from PIL import Image
>>> processor = AutoProcessor.from_pretrained("microsoft/git-base-coco")
>>> model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> pixel_values = processor(images=image, return_tensors="pt").pixel_values
>>> generated_ids = model.generate(pixel_values=pixel_values, max_length=50)
>>> generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> print(generated_caption)
two cats sleeping on a pink blanket next to remotes.
视觉问答 (VQA) 示例
>>> from transformers import AutoProcessor, AutoModelForCausalLM
>>> from huggingface_hub import hf_hub_download
>>> from PIL import Image
>>> processor = AutoProcessor.from_pretrained("microsoft/git-base-textvqa")
>>> model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-textvqa")
>>> file_path = hf_hub_download(repo_id="nielsr/textvqa-sample", filename="bus.png", repo_type="dataset")
>>> image = Image.open(file_path).convert("RGB")
>>> pixel_values = processor(images=image, return_tensors="pt").pixel_values
>>> question = "what does the front of the bus say at the top?"
>>> input_ids = processor(text=question, add_special_tokens=False).input_ids
>>> input_ids = [processor.tokenizer.cls_token_id] + input_ids
>>> input_ids = torch.tensor(input_ids).unsqueeze(0)
>>> generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50)
>>> print(processor.batch_decode(generated_ids, skip_special_tokens=True))
['what does the front of the bus say at the top? special']
视频字幕示例
>>> import av
>>> import numpy as np
>>> from PIL import Image
>>> from huggingface_hub import hf_hub_download
>>> from transformers import AutoProcessor, AutoModelForCausalLM
>>> processor = AutoProcessor.from_pretrained("microsoft/git-base-vatex")
>>> model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-vatex")
>>> # set seed for reproducability
>>> np.random.seed(45)
>>> def read_video_pyav(container, indices):
... '''
... Decode the video with PyAV decoder.
... Args:
... container (`av.container.input.InputContainer`): PyAV container.
... indices (`List[int]`): List of frame indices to decode.
... Returns:
... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
... '''
... frames = []
... container.seek(0)
... start_index = indices[0]
... end_index = indices[-1]
... for i, frame in enumerate(container.decode(video=0)):
... if i > end_index:
... break
... if i >= start_index and i in indices:
... frames.append(frame)
... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
... '''
... Sample a given number of frame indices from the video.
... Args:
... clip_len (`int`): Total number of frames to sample.
... frame_sample_rate (`int`): Sample every n-th frame.
... seg_len (`int`): Maximum allowed index of sample's last frame.
... Returns:
... indices (`List[int]`): List of sampled frame indices
... '''
... converted_len = int(clip_len * frame_sample_rate)
... end_idx = np.random.randint(converted_len, seg_len)
... start_idx = end_idx - converted_len
... indices = np.linspace(start_idx, end_idx, num=clip_len)
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
... return indices
>>> # load video
>>> file_path = hf_hub_download(
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
>>> container = av.open(file_path)
>>> # sample frames
>>> num_frames = model.config.num_image_with_embedding
>>> indices = sample_frame_indices(
... clip_len=num_frames, frame_sample_rate=4, seg_len=container.streams.video[0].frames
... )
>>> frames = read_video_pyav(container, indices)
>>> pixel_values = processor(images=list(frames), return_tensors="pt").pixel_values
>>> generated_ids = model.generate(pixel_values=pixel_values, max_length=50)
>>> print("Generated caption:", processor.batch_decode(generated_ids, skip_special_tokens=True))
Generated caption: ['a woman is sitting at a table and she is talking about the food she is holding.']