Transformers 文档

LiLT

Hugging Face's logo
加入 Hugging Face 社区

并获得增强的文档体验

开始使用

LiLT

概述

LiLT 模型是在 LiLT: 用于结构化文档理解的简单而有效的语言无关布局转换器 中由 Jiapeng Wang、Lianwen Jin 和 Kai Ding 提出的。LiLT 允许将任何预训练的 RoBERTa 文本编码器与轻量级布局转换器相结合,从而为多种语言实现类似 LayoutLM 的文档理解。

论文的摘要是以下内容

结构化文档理解因其在智能文档处理中的关键作用而引起了相当大的关注,并且最近取得了重大进展。然而,大多数现有的相关模型只能处理预训练集合中包含的特定语言(通常是英语)的文档数据,这是极其有限的。为了解决这个问题,我们提出了一种简单而有效的语言无关布局转换器 (LiLT),用于结构化文档理解。LiLT 可以在单一语言的结构化文档上进行预训练,然后使用相应的现成单语/多语预训练文本模型直接在其他语言上进行微调。在八种语言上的实验结果表明,LiLT 可以在各种广泛使用的下游基准测试中取得具有竞争力甚至更好的性能,这使得文档布局结构的预训练能够获得语言无关的收益。

drawing LiLT 架构。取自 原文

此模型由 nielsr 贡献。原始代码可以在 此处 找到。

使用技巧

  • 要将语言无关布局转换器与来自 中心 的新 RoBERTa 检查点相结合,请参阅 本指南。该脚本将导致 config.jsonpytorch_model.bin 文件存储在本地。完成此操作后,可以执行以下操作(假设您已使用 HuggingFace 帐户登录)
from transformers import LiltModel

model = LiltModel.from_pretrained("path_to_your_files")
model.push_to_hub("name_of_repo_on_the_hub")

资源

官方 Hugging Face 和社区(用 🌎 表示)资源列表,可帮助您开始使用 LiLT。

  • LiLT 的演示笔记本可以在 此处 找到。

文档资源

如果您有兴趣提交资源以包含在此处,请随时打开拉取请求,我们将对其进行审核!理想情况下,该资源应展示一些新内容,而不是重复现有资源。

LiltConfig

transformers.LiltConfig

< >

( vocab_size = 30522 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 type_vocab_size = 2 initializer_range = 0.02 layer_norm_eps = 1e-12 pad_token_id = 0 position_embedding_type = 'absolute' classifier_dropout = None channel_shrink_ratio = 4 max_2d_position_embeddings = 1024 **kwargs )

参数

  • vocab_size (int, 可选, 默认为 30522) — LiLT 模型的词汇表大小。定义了在调用 LiltModel 时传递的 inputs_ids 可以表示的不同标记的数量。
  • hidden_size (int, 可选, 默认为 768) — 编码器层和池化层的维度。应该是 24 的倍数。
  • num_hidden_layers (int, 可选, 默认为 12) — Transformer 编码器中隐藏层的数量。
  • num_attention_heads (int, 可选, 默认为 12) — Transformer 编码器中每个注意力层的注意力头数。
  • intermediate_size (int, 可选, 默认为 3072) — Transformer 编码器中“中间”(通常称为前馈)层的维度。
  • hidden_act (strCallable, 可选, 默认为 "gelu") — 编码器和池化器中的非线性激活函数(函数或字符串)。 如果是字符串,则支持 "gelu""relu""silu""gelu_new"
  • hidden_dropout_prob (float, 可选, 默认为 0.1) — 嵌入、编码器和池化器中所有全连接层的 dropout 概率。
  • attention_probs_dropout_prob (float, 可选, 默认为 0.1) — 注意力概率的 dropout 比率。
  • max_position_embeddings (int, 可选, 默认为 512) — 此模型可能使用的最大序列长度。 通常将其设置为较大的值以防万一(例如,512 或 1024 或 2048)。
  • type_vocab_size (int, 可选, 默认为 2) — 调用 LiltModel 时传递的 token_type_ids 的词汇表大小。
  • initializer_range (float可选,默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。
  • layer_norm_eps (float可选,默认为 1e-12) — 层归一化层使用的 epsilon。
  • position_embedding_type (str可选,默认为 "absolute") — 位置嵌入的类型。选择 "absolute""relative_key""relative_key_query" 之一。对于位置嵌入,请使用 "absolute"。有关 "relative_key" 的更多信息,请参阅 具有相对位置表示的自注意力(Shaw 等人)。有关 "relative_key_query" 的更多信息,请参阅 使用更好的相对位置嵌入改进 Transformer 模型(Huang 等人) 中的“方法 4”。
  • classifier_dropout (float可选) — 分类头的 dropout 比率。
  • channel_shrink_ratio (int可选,默认为 4) — 布局嵌入的通道维度相对于 hidden_size 的缩小比率。
  • max_2d_position_embeddings (int可选,默认为 1024) — 可能会使用到的 2D 位置嵌入的最大值。通常将其设置为较大的值以防万一(例如 1024)。

这是用于存储 LiltModel 配置的配置类。它用于根据指定的参数实例化 LiLT 模型,定义模型架构。使用默认值实例化配置将产生与 LiLT SCUT-DLVCLab/lilt-roberta-en-base 架构类似的配置。配置对象继承自 PretrainedConfig,可用于控制模型输出。请阅读 PretrainedConfig 的文档以了解更多信息。

示例

>>> from transformers import LiltConfig, LiltModel

>>> # Initializing a LiLT SCUT-DLVCLab/lilt-roberta-en-base style configuration
>>> configuration = LiltConfig()
>>> # Randomly initializing a model from the SCUT-DLVCLab/lilt-roberta-en-base style configuration
>>> model = LiltModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config

LiltModel

transformers.LiltModel

< >

( config add_pooling_layer = True )

参数

  • config (LiltConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

基本的 LiLT 模型 Transformer,输出原始隐藏状态,没有任何特定的头部。该模型继承自 PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头部等)。

此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以了解与一般用法和行为相关的所有内容。

forward

< >

( input_ids: Optional = None bbox: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.BaseModelOutputWithPoolingtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor 形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • bbox (torch.LongTensor 形状为 (batch_size, sequence_length, 4)可选) — 每个输入序列标记的边界框。在 [0, config.max_2d_position_embeddings-1] 范围内选择。每个边界框都应该是 (x0, y0, x1, y1) 格式的标准化版本,其中 (x0, y0) 对应边界框左上角的位置,(x1, y1) 表示右下角的位置。有关标准化,请参阅概述
  • attention_mask (torch.FloatTensor 形状为 (batch_size, sequence_length)可选) — 掩码以避免对填充标记索引执行注意力。掩码值在 [0, 1] 中选择:

    • 1 表示未被掩码的标记,
    • 0 表示被掩码的标记。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor 形状为 (batch_size, sequence_length)可选) — 段落标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于句子 A 标记,
    • 1 对应于句子 B 标记。

    什么是标记类型 ID?

  • position_ids (torch.LongTensor 形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列标记的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads)可选) — 用于将自注意力模块的选定头部置零的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头部未被掩码
    • 0 表示头部被掩码
  • inputs_embeds (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)可选) — 或者,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望更好地控制如何将 input_ids 索引转换为关联向量,而不是模型的内部嵌入查找矩阵,则此选项非常有用。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_outputs.BaseModelOutputWithPoolingtuple(torch.FloatTensor)

transformers.modeling_outputs.BaseModelOutputWithPoolingtorch.FloatTensor 的元组(如果传递 return_dict=False 或当 config.return_dict=False 时),其中包含根据配置(LiltConfig)和输入而变化的各种元素。

  • last_hidden_state (形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor) — 模型最后一层输出的隐藏状态序列。

  • pooler_output (形状为 (batch_size, hidden_size)torch.FloatTensor) — 序列第一个标记(分类标记)在经过用于辅助预训练任务的层进一步处理后的最后一层隐藏状态。例如,对于 BERT 系列模型,这将返回经过线性层和 tanh 激活函数处理后的分类标记。线性层权重在预训练期间根据下一句预测(分类)目标进行训练。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(如果模型有嵌入层,则一个用于嵌入的输出 + 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每层输出处的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

LiltModel 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的方法需要在此函数中定义,但之后应该调用 Module 实例而不是此实例,因为前者负责运行前后处理步骤,而后者则默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, AutoModel
>>> from datasets import load_dataset

>>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
>>> model = AutoModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")

>>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train", trust_remote_code=True)
>>> example = dataset[0]
>>> words = example["tokens"]
>>> boxes = example["bboxes"]

>>> encoding = tokenizer(words, boxes=boxes, return_tensors="pt")

>>> outputs = model(**encoding)
>>> last_hidden_states = outputs.last_hidden_state

LiltForSequenceClassification

class transformers.LiltForSequenceClassification

< >

( config )

参数

  • config (LiltConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

LiLT 模型转换器,顶部带有序列分类/回归头(池化输出顶部的线性层),例如用于 GLUE 任务。

此模型继承自 PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入的大小、修剪头部等)。

此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以了解与一般用法和行为相关的所有内容。

forward

< >

( input_ids: Optional = None bbox: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor 形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • bbox (torch.LongTensor 形状为 (batch_size, sequence_length, 4)可选) — 每个输入序列标记的边界框。在 [0, config.max_2d_position_embeddings-1] 范围内选择。每个边界框都应该是 (x0, y0, x1, y1) 格式的归一化版本,其中 (x0, y0) 对应于边界框中左上角的位置,(x1, y1) 表示右下角的位置。请参阅 概述 了解归一化。
  • attention_mask (torch.FloatTensor 形状为 (batch_size, sequence_length), 可选) — 掩码避免在填充标记索引上执行注意力。掩码值在 [0, 1] 中选择:

    • 1 表示 未被掩码 的标记,
    • 0 表示 被掩码 的标记。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 标记,
    • 1 对应于 句子 B 标记。

    什么是标记类型 ID?

  • position_ids (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 位置嵌入中每个输入序列标记的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于将自注意力模块的选定头部置零的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头部 未被掩码,
    • 0 表示头部 被掩码
  • inputs_embeds (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size), 可选) — 或者,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更好地控制如何将 input_ids 索引转换为关联向量,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通的元组。
  • labels (torch.LongTensor 形状为 (batch_size,), 可选) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 中。如果 config.num_labels == 1,则计算回归损失(均方误差);如果 config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

transformers.modeling_outputs.SequenceClassifierOutputtorch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含根据配置 (LiltConfig) 和输入的不同元素。

  • loss (torch.FloatTensor 形状为 (1,), 可选, 当提供 labels 时返回) — 分类(或回归,如果 config.num_labels==1)损失。

  • logits (torch.FloatTensor 形状为 (batch_size, config.num_labels)) — 分类(或回归,如果 config.num_labels==1)分数(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(如果模型有嵌入层,则一个用于嵌入的输出 + 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每层输出处的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

LiltForSequenceClassification 的前向方法,重写了 __call__ 特殊方法。

虽然前向传递的方法需要在此函数中定义,但之后应该调用 Module 实例而不是此实例,因为前者负责运行前后处理步骤,而后者则默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, AutoModelForSequenceClassification
>>> from datasets import load_dataset

>>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
>>> model = AutoModelForSequenceClassification.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")

>>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train", trust_remote_code=True)
>>> example = dataset[0]
>>> words = example["tokens"]
>>> boxes = example["bboxes"]

>>> encoding = tokenizer(words, boxes=boxes, return_tensors="pt")

>>> outputs = model(**encoding)
>>> predicted_class_idx = outputs.logits.argmax(-1).item()
>>> predicted_class = model.config.id2label[predicted_class_idx]

LiltForTokenClassification

transformers.LiltForTokenClassification

< >

( config )

参数

  • config (LiltConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

Lilt 模型,顶部带有标记分类头(隐藏状态输出顶部的线性层),例如用于命名实体识别 (NER) 任务。

此模型继承自 PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入的大小、修剪头部等)。

此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以了解与一般用法和行为相关的所有内容。

forward

< >

( input_ids: Optional = None bbox: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor 形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    索引可以通过 AutoTokenizer 获取。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • bbox (torch.LongTensor 形状为 (batch_size, sequence_length, 4), 可选) — 每个输入序列标记的边界框。在 [0, config.max_2d_position_embeddings-1] 范围内选择。每个边界框都应该是 (x0, y0, x1, y1) 格式的标准化版本,其中 (x0, y0) 对应于边界框中左上角的位置,(x1, y1) 表示右下角的位置。有关标准化,请参阅 概述
  • attention_mask (torch.FloatTensor 形状为 (batch_size, sequence_length), 可选) — 掩码以避免对填充标记索引执行注意力。掩码值在 [0, 1] 中选择:

    • 1 表示 未被掩码 的标记,
    • 0 表示 被掩码 的标记。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 标记,
    • 1 对应于 句子 B 标记。

    什么是标记类型 ID?

  • position_ids (torch.LongTensor 形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列标记的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads)可选) — 用于将自注意力模块的选定头部置零的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头部未被掩码
    • 0 表示头部已被掩码
  • inputs_embeds (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更好地控制如何将 input_ids 索引转换为关联向量,则此方法很有用。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor 形状为 (batch_size, sequence_length)可选) — 用于计算标记分类损失的标签。索引应在 [0, ..., config.num_labels - 1] 中。

返回

transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

根据配置 (LiltConfig) 和输入,transformers.modeling_outputs.TokenClassifierOutputtorch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时)包含各种元素。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 labels 时返回) — 分类损失。

  • logits (torch.FloatTensor 形状为 (batch_size, sequence_length, config.num_labels)) — 分类分数(在 SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(如果模型有嵌入层,则一个用于嵌入的输出 + 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每层输出处的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

LiltForTokenClassification 的 forward 方法重写了 __call__ 特殊方法。

虽然前向传递的方法需要在此函数中定义,但之后应该调用 Module 实例而不是此实例,因为前者负责运行前后处理步骤,而后者则默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, AutoModelForTokenClassification
>>> from datasets import load_dataset

>>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
>>> model = AutoModelForTokenClassification.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")

>>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train", trust_remote_code=True)
>>> example = dataset[0]
>>> words = example["tokens"]
>>> boxes = example["bboxes"]

>>> encoding = tokenizer(words, boxes=boxes, return_tensors="pt")

>>> outputs = model(**encoding)
>>> predicted_class_indices = outputs.logits.argmax(-1)

LiltForQuestionAnswering

transformers.LiltForQuestionAnswering

< >

( config )

参数

  • config (LiltConfig) — 模型配置类,包含模型的所有参数。 使用配置文件初始化不会加载与模型关联的权重,只会加载配置。 请查看 from_pretrained() 方法来加载模型权重。

Lilt 模型的顶部有一个用于抽取式问答任务(例如 SQuAD)的范围分类头(隐藏状态输出顶部的线性层,用于计算 span start logitsspan end logits)。

此模型继承自 PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入的大小、修剪头部等)。

此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以了解与一般用法和行为相关的所有内容。

forward

< >

( input_ids: Optional = None bbox: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None start_positions: Optional = None end_positions: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor 形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    索引可以通过 AutoTokenizer 获取。 更多详情,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • bbox (torch.LongTensor 形状为 (batch_size, sequence_length, 4)可选) — 每个输入序列标记的边界框。 在 [0, config.max_2d_position_embeddings-1] 范围内选择。 每个边界框应该是 (x0, y0, x1, y1) 格式的归一化版本,其中 (x0, y0) 对应于边界框中左上角的位置,(x1, y1) 表示右下角的位置。 请参阅 概述 了解归一化。
  • attention_mask (torch.FloatTensor 形状为 (batch_size, sequence_length)可选) — 掩码,用于避免对填充标记索引执行注意力。 掩码值在 [0, 1] 中选择:

    • 未被掩码 的标记为 1,
    • 被掩码 的标记为 0。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor 形状为 (batch_size, sequence_length)可选) — 段落标记索引,用于指示输入的第一部分和第二部分。 索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 标记,
    • 1 对应于 句子 B 标记。

    什么是标记类型 ID?

  • position_ids (torch.LongTensor 形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列标记的位置索引。 在 [0, config.max_position_embeddings - 1] 范围内选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads)可选) — 掩码,用于将自注意力模块的选定头部置零。 掩码值在 [0, 1] 中选择:

    • 1 表示头部未被掩码
    • 0 表示头部被掩码
  • inputs_embeds (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更好地控制如何将 input_ids 索引转换为关联向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。
  • start_positions (torch.LongTensor 形状为 (batch_size,)可选) — 用于计算标记分类损失的标记跨度开始位置(索引)的标签。位置会被钳制到序列的长度(sequence_length)。序列之外的位置不计入损失计算。
  • end_positions (torch.LongTensor 形状为 (batch_size,)可选) — 用于计算标记分类损失的标记跨度结束位置(索引)的标签。位置会被钳制到序列的长度(sequence_length)。序列之外的位置不计入损失计算。

返回

transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时)包含根据配置 (LiltConfig) 和输入的不同元素。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 labels 时返回) — 总跨度提取损失是开始和结束位置的交叉熵之和。

  • start_logits (torch.FloatTensor 形状为 (batch_size, sequence_length)) — 跨度开始分数(SoftMax 之前)。

  • end_logits (torch.FloatTensor 形状为 (batch_size, sequence_length)) — 跨度结束分数(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(如果模型有嵌入层,则一个用于嵌入的输出 + 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每层输出处的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

LiltForQuestionAnswering 的 forward 方法,覆盖了 __call__ 特殊方法。

虽然前向传递的方法需要在此函数中定义,但之后应该调用 Module 实例而不是此实例,因为前者负责运行前后处理步骤,而后者则默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, AutoModelForQuestionAnswering
>>> from datasets import load_dataset

>>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
>>> model = AutoModelForQuestionAnswering.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")

>>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train", trust_remote_code=True)
>>> example = dataset[0]
>>> words = example["tokens"]
>>> boxes = example["bboxes"]

>>> encoding = tokenizer(words, boxes=boxes, return_tensors="pt")

>>> outputs = model(**encoding)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = encoding.input_ids[0, answer_start_index : answer_end_index + 1]
>>> predicted_answer = tokenizer.decode(predict_answer_tokens)
< > 在 GitHub 上更新