智能体课程文档
构建你自己的宝可梦对战智能体
并获得增强的文档体验
开始使用
构建你自己的宝可梦对战智能体
既然你已经探索了代理AI在游戏中的潜力和局限性,现在是时候动手实践了。在本节中,你将运用本课程所学的一切,构建你自己的AI智能体,以进行宝可梦式的回合制战斗。
我们将系统分解为四个关键构建块:
Poke-env: 一个旨在训练基于规则或强化学习宝可梦机器人的Python库。
Pokémon Showdown: 一个在线对战模拟器,你的智能体将在其中进行战斗。
LLMAgentBase: 我们构建的一个自定义Python类,用于将你的LLM连接到Poke-env对战环境。
TemplateAgent: 一个你将完成的起始模板,用于创建你自己独特的对战智能体。
让我们更详细地探讨这些组件。
🧠 Poke-env
Poke-env 是一个Python接口,最初由 Haris Sahovic 构建,用于训练强化学习机器人,但我们将其重新用于代理AI。
它允许你的智能体通过简单的API与Pokémon Showdown交互。
它提供了一个`Player`类,你的智能体将继承自该类,涵盖了与图形界面通信所需的一切。
文档: poke-env.readthedocs.io
仓库: github.com/hsahovic/poke-env
⚔️ Pokémon Showdown
Pokémon Showdown 是一个开源对战模拟器,你的智能体将在这里进行实时宝可梦对战。
它提供了一个完整的界面,可以实时模拟和显示战斗。在我们的挑战中,你的机器人将像人类玩家一样,逐回合选择行动。
我们已经部署了一个服务器,所有参与者都将使用该服务器进行对战。让我们看看谁能构建出最强大的AI对战智能体!
仓库: github.com/smogon/Pokemon-Showdown
网站: pokemonshowdown.com
🔌 LLMAgentBase
LLMAgentBase
是一个 Python 类,它扩展了 Poke-env 的 Player
类。
它充当你的 LLM 和 宝可梦对战模拟器 之间的桥梁,负责处理输入/输出格式化和维护战斗上下文。
这个基础智能体提供了一套工具(在 STANDARD_TOOL_SCHEMA
中定义),用于与环境交互,包括:
choose_move
:用于在战斗中选择攻击choose_switch
:用于切换宝可梦
LLM 应该使用这些工具在比赛中做出决策。
🧠 核心逻辑
choose_move(battle: Battle)
: 这是每回合调用的主要方法。它接收一个Battle
对象,并根据 LLM 的输出返回一个动作字符串。
🔧 关键内部方法
_format_battle_state(battle)
: 将当前战斗状态转换为字符串,使其适合发送给 LLM。_find_move_by_name(battle, move_name)
: 根据名称查找招式,用于调用choose_move
的 LLM 响应中。_find_pokemon_by_name(battle, pokemon_name)
: 根据 LLM 的切换指令,定位要切换到的特定宝可梦。_get_llm_decision(battle_state)
: 此方法在基类中是抽象的。你需要在你自己的代理中实现它(参见下一节),在那里你定义如何查询 LLM 并解析其响应。
这是展示决策如何工作的一个片段:
STANDARD_TOOL_SCHEMA = {
"choose_move": {
...
},
"choose_switch": {
...
},
}
class LLMAgentBase(Player):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.standard_tools = STANDARD_TOOL_SCHEMA
self.battle_history = []
def _format_battle_state(self, battle: Battle) -> str:
active_pkmn = battle.active_pokemon
active_pkmn_info = f"Your active Pokemon: {active_pkmn.species} " \
f"(Type: {'/'.join(map(str, active_pkmn.types))}) " \
f"HP: {active_pkmn.current_hp_fraction * 100:.1f}% " \
f"Status: {active_pkmn.status.name if active_pkmn.status else 'None'} " \
f"Boosts: {active_pkmn.boosts}"
opponent_pkmn = battle.opponent_active_pokemon
opp_info_str = "Unknown"
if opponent_pkmn:
opp_info_str = f"{opponent_pkmn.species} " \
f"(Type: {'/'.join(map(str, opponent_pkmn.types))}) " \
f"HP: {opponent_pkmn.current_hp_fraction * 100:.1f}% " \
f"Status: {opponent_pkmn.status.name if opponent_pkmn.status else 'None'} " \
f"Boosts: {opponent_pkmn.boosts}"
opponent_pkmn_info = f"Opponent's active Pokemon: {opp_info_str}"
available_moves_info = "Available moves:\n"
if battle.available_moves:
available_moves_info += "\n".join(
[f"- {move.id} (Type: {move.type}, BP: {move.base_power}, Acc: {move.accuracy}, PP: {move.current_pp}/{move.max_pp}, Cat: {move.category.name})"
for move in battle.available_moves]
)
else:
available_moves_info += "- None (Must switch or Struggle)"
available_switches_info = "Available switches:\n"
if battle.available_switches:
available_switches_info += "\n".join(
[f"- {pkmn.species} (HP: {pkmn.current_hp_fraction * 100:.1f}%, Status: {pkmn.status.name if pkmn.status else 'None'})"
for pkmn in battle.available_switches]
)
else:
available_switches_info += "- None"
state_str = f"{active_pkmn_info}\n" \
f"{opponent_pkmn_info}\n\n" \
f"{available_moves_info}\n\n" \
f"{available_switches_info}\n\n" \
f"Weather: {battle.weather}\n" \
f"Terrains: {battle.fields}\n" \
f"Your Side Conditions: {battle.side_conditions}\n" \
f"Opponent Side Conditions: {battle.opponent_side_conditions}"
return state_str.strip()
def _find_move_by_name(self, battle: Battle, move_name: str) -> Optional[Move]:
normalized_name = normalize_name(move_name)
# Prioritize exact ID match
for move in battle.available_moves:
if move.id == normalized_name:
return move
# Fallback: Check display name (less reliable)
for move in battle.available_moves:
if move.name.lower() == move_name.lower():
print(f"Warning: Matched move by display name '{move.name}' instead of ID '{move.id}'. Input was '{move_name}'.")
return move
return None
def _find_pokemon_by_name(self, battle: Battle, pokemon_name: str) -> Optional[Pokemon]:
normalized_name = normalize_name(pokemon_name)
for pkmn in battle.available_switches:
# Normalize the species name for comparison
if normalize_name(pkmn.species) == normalized_name:
return pkmn
return None
async def choose_move(self, battle: Battle) -> str:
battle_state_str = self._format_battle_state(battle)
decision_result = await self._get_llm_decision(battle_state_str)
print(decision_result)
decision = decision_result.get("decision")
error_message = decision_result.get("error")
action_taken = False
fallback_reason = ""
if decision:
function_name = decision.get("name")
args = decision.get("arguments", {})
if function_name == "choose_move":
move_name = args.get("move_name")
if move_name:
chosen_move = self._find_move_by_name(battle, move_name)
if chosen_move and chosen_move in battle.available_moves:
action_taken = True
chat_msg = f"AI Decision: Using move '{chosen_move.id}'."
print(chat_msg)
return self.create_order(chosen_move)
else:
fallback_reason = f"LLM chose unavailable/invalid move '{move_name}'."
else:
fallback_reason = "LLM 'choose_move' called without 'move_name'."
elif function_name == "choose_switch":
pokemon_name = args.get("pokemon_name")
if pokemon_name:
chosen_switch = self._find_pokemon_by_name(battle, pokemon_name)
if chosen_switch and chosen_switch in battle.available_switches:
action_taken = True
chat_msg = f"AI Decision: Switching to '{chosen_switch.species}'."
print(chat_msg)
return self.create_order(chosen_switch)
else:
fallback_reason = f"LLM chose unavailable/invalid switch '{pokemon_name}'."
else:
fallback_reason = "LLM 'choose_switch' called without 'pokemon_name'."
else:
fallback_reason = f"LLM called unknown function '{function_name}'."
if not action_taken:
if not fallback_reason:
if error_message:
fallback_reason = f"API Error: {error_message}"
elif decision is None:
fallback_reason = "LLM did not provide a valid function call."
else:
fallback_reason = "Unknown error processing LLM decision."
print(f"Warning: {fallback_reason} Choosing random action.")
if battle.available_moves or battle.available_switches:
return self.choose_random_move(battle)
else:
print("AI Fallback: No moves or switches available. Using Struggle/Default.")
return self.choose_default_move(battle)
async def _get_llm_decision(self, battle_state: str) -> Dict[str, Any]:
raise NotImplementedError("Subclasses must implement _get_llm_decision")
完整源代码: agents.py
🧪 TemplateAgent
现在,有趣的部分来了!以 LLMAgentBase 为基础,是时候实现你自己的智能体了,用你自己的策略来攀登排行榜。
你将从这个模板开始,构建你自己的逻辑。我们还提供了三个使用 OpenAI、Mistral 和 Gemini 模型的完整示例来指导你。
这是一个简化版的模板:
class TemplateAgent(LLMAgentBase):
"""Uses Template AI API for decisions."""
def __init__(self, api_key: str = None, model: str = "model-name", *args, **kwargs):
super().__init__(*args, **kwargs)
self.model = model
self.template_client = TemplateModelProvider(api_key=...)
self.template_tools = list(self.standard_tools.values())
async def _get_llm_decision(self, battle_state: str) -> Dict[str, Any]:
"""Sends state to the LLM and gets back the function call decision."""
system_prompt = (
"You are a ..."
)
user_prompt = f"..."
try:
response = await self.template_client.chat.completions.create(
model=self.model,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
],
)
message = response.choices[0].message
return {"decision": {"name": function_name, "arguments": arguments}}
except Exception as e:
print(f"Unexpected error during call: {e}")
return {"error": f"Unexpected error: {e}"}
这段代码不能直接运行,它是你自定义逻辑的蓝图。
所有准备就绪后,轮到你来构建一个有竞争力的智能体了。在下一节中,我们将展示如何将你的智能体部署到我们的服务器上,并与其他智能体进行实时对战。
战斗开始!🔥
< > 在 GitHub 上更新