带自动错误纠正功能的文本到SQL代理
在本教程中,我们将了解如何使用transformers.agents
实现一个利用SQL的代理。
与标准的文本到SQL管道相比,有什么优势?
标准的文本到SQL管道很脆弱,因为生成的SQL查询可能不正确。更糟糕的是,查询可能不正确,但不会引发错误,而是会给出一些错误/无用的输出,而不会发出警报。
👉 相反,**代理系统能够批判性地检查输出并决定是否需要更改查询**,从而极大地提高了性能。
让我们构建这个代理!💪
设置SQL表
from sqlalchemy import (
create_engine,
MetaData,
Table,
Column,
String,
Integer,
Float,
insert,
inspect,
text,
)
engine = create_engine("sqlite:///:memory:")
metadata_obj = MetaData()
# create city SQL table
table_name = "receipts"
receipts = Table(
table_name,
metadata_obj,
Column("receipt_id", Integer, primary_key=True),
Column("customer_name", String(16), primary_key=True),
Column("price", Float),
Column("tip", Float),
)
metadata_obj.create_all(engine)
rows = [
{"receipt_id": 1, "customer_name": "Alan Payne", "price": 12.06, "tip": 1.20},
{"receipt_id": 2, "customer_name": "Alex Mason", "price": 23.86, "tip": 0.24},
{"receipt_id": 3, "customer_name": "Woodrow Wilson", "price": 53.43, "tip": 5.43},
{"receipt_id": 4, "customer_name": "Margaret James", "price": 21.11, "tip": 1.00},
]
for row in rows:
stmt = insert(receipts).values(**row)
with engine.begin() as connection:
cursor = connection.execute(stmt)
让我们检查一下我们的系统是否可以使用基本查询
>>> with engine.connect() as con:
... rows = con.execute(text("""SELECT * from receipts"""))
... for row in rows:
... print(row)
(1, 'Alan Payne', 12.06, 1.2) (2, 'Alex Mason', 23.86, 0.24) (3, 'Woodrow Wilson', 53.43, 5.43) (4, 'Margaret James', 21.11, 1.0)
构建我们的代理
现在让我们使SQL表可以通过工具检索。
工具的description
属性将由代理系统嵌入到LLM的提示中:它向LLM提供有关如何使用该工具的信息。所以我们希望在这里描述SQL表。
>>> inspector = inspect(engine)
>>> columns_info = [(col["name"], col["type"]) for col in inspector.get_columns("receipts")]
>>> table_description = "Columns:\n" + "\n".join([f" - {name}: {col_type}" for name, col_type in columns_info])
>>> print(table_description)
Columns: - receipt_id: INTEGER - customer_name: VARCHAR(16) - price: FLOAT - tip: FLOAT
现在让我们构建我们的工具。它需要以下内容:(阅读文档以获取更多详细信息)
- 带有
Args:
部分的文档字符串 - 类型提示
from transformers.agents import tool
@tool
def sql_engine(query: str) -> str:
"""
Allows you to perform SQL queries on the table. Returns a string representation of the result.
The table is named 'receipts'. Its description is as follows:
Columns:
- receipt_id: INTEGER
- customer_name: VARCHAR(16)
- price: FLOAT
- tip: FLOAT
Args:
query: The query to perform. This should be correct SQL.
"""
output = ""
with engine.connect() as con:
rows = con.execute(text(query))
for row in rows:
output += "\n" + str(row)
return output
现在让我们创建一个利用此工具的代理。
我们使用ReactCodeAgent
,它是transformers.agents
的主要代理类:一个以代码编写操作并在ReAct框架下根据先前输出进行迭代的代理。
llm_engine
是为代理系统提供动力的LLM。HfEngine
允许您使用HF的推理API调用LLM,无论是通过无服务器还是专用端点,但您也可以使用任何专有API:查看此其他食谱以了解如何对其进行调整。
from transformers.agents import ReactCodeAgent, HfApiEngine
agent = ReactCodeAgent(
tools=[sql_engine],
llm_engine=HfApiEngine("meta-llama/Meta-Llama-3-8B-Instruct"),
)
agent.run("Can you give me the name of the client who got the most expensive receipt?")
难度提升:表连接
现在让我们使其更具挑战性!我们希望我们的代理能够处理跨多个表的连接。
所以让我们创建一个第二个表,为每个receipt_id
记录服务员的姓名!
table_name = "waiters"
receipts = Table(
table_name,
metadata_obj,
Column("receipt_id", Integer, primary_key=True),
Column("waiter_name", String(16), primary_key=True),
)
metadata_obj.create_all(engine)
rows = [
{"receipt_id": 1, "waiter_name": "Corey Johnson"},
{"receipt_id": 2, "waiter_name": "Michael Watts"},
{"receipt_id": 3, "waiter_name": "Michael Watts"},
{"receipt_id": 4, "waiter_name": "Margaret James"},
]
for row in rows:
stmt = insert(receipts).values(**row)
with engine.begin() as connection:
cursor = connection.execute(stmt)
我们需要使用此表的描述更新SQLExecutorTool
,以使LLM能够正确地利用来自此表的信息。
>>> updated_description = """Allows you to perform SQL queries on the table. Beware that this tool's output is a string representation of the execution output.
... It can use the following tables:"""
>>> inspector = inspect(engine)
>>> for table in ["receipts", "waiters"]:
... columns_info = [(col["name"], col["type"]) for col in inspector.get_columns(table)]
... table_description = f"Table '{table}':\n"
... table_description += "Columns:\n" + "\n".join([f" - {name}: {col_type}" for name, col_type in columns_info])
... updated_description += "\n\n" + table_description
>>> print(updated_description)
Allows you to perform SQL queries on the table. Beware that this tool's output is a string representation of the execution output. It can use the following tables: Table 'receipts': Columns: - receipt_id: INTEGER - customer_name: VARCHAR(16) - price: FLOAT - tip: FLOAT Table 'waiters': Columns: - receipt_id: INTEGER - waiter_name: VARCHAR(16)
由于此请求比上一个请求稍微复杂一些,我们将切换llm引擎以使用功能更强大的Qwen/Qwen2.5-72B-Instruct!
sql_engine.description = updated_description
agent = ReactCodeAgent(
tools=[sql_engine],
llm_engine=HfApiEngine("Qwen/Qwen2.5-72B-Instruct"),
)
agent.run("Which waiter got more total money from tips?")
它直接起作用了!设置出乎意料地简单,不是吗?
✅ 现在您可以构建您一直梦寐以求的文本到SQL系统了!✨
< > 在GitHub上更新