Diffusers 文档
入门:使用混合推理进行 VAE 编码
加入 Hugging Face 社区
并获得增强的文档体验
开始使用
入门:使用混合推理进行 VAE 编码
VAE 编码用于训练、图像到图像和图像到视频——将图像或视频转换为潜在表示。
内存
这些表格展示了使用 SD v1 和 SD XL 在不同 GPU 上进行 VAE 编码所需的 VRAM。
对于大多数 GPU,内存使用百分比决定了其他模型(文本编码器、UNet/Transformer)必须卸载,或者必须使用平铺编码,这会增加时间并影响质量。
SD v1.5
GPU | 分辨率 | 时间(秒) | 内存 (%) | 平铺时间(秒) | 平铺内存 (%) |
---|---|---|---|---|---|
NVIDIA GeForce RTX 4090 | 512x512 | 0.015 | 3.51901 | 0.015 | 3.51901 |
NVIDIA GeForce RTX 4090 | 256x256 | 0.004 | 1.3154 | 0.005 | 1.3154 |
NVIDIA GeForce RTX 4090 | 2048x2048 | 0.402 | 47.1852 | 0.496 | 3.51901 |
NVIDIA GeForce RTX 4090 | 1024x1024 | 0.078 | 12.2658 | 0.094 | 3.51901 |
NVIDIA GeForce RTX 4080 SUPER | 512x512 | 0.023 | 5.30105 | 0.023 | 5.30105 |
NVIDIA GeForce RTX 4080 SUPER | 256x256 | 0.006 | 1.98152 | 0.006 | 1.98152 |
NVIDIA GeForce RTX 4080 SUPER | 2048x2048 | 0.574 | 71.08 | 0.656 | 5.30105 |
NVIDIA GeForce RTX 4080 SUPER | 1024x1024 | 0.111 | 18.4772 | 0.14 | 5.30105 |
NVIDIA GeForce RTX 3090 | 512x512 | 0.032 | 3.52782 | 0.032 | 3.52782 |
NVIDIA GeForce RTX 3090 | 256x256 | 0.01 | 1.31869 | 0.009 | 1.31869 |
NVIDIA GeForce RTX 3090 | 2048x2048 | 0.742 | 47.3033 | 0.954 | 3.52782 |
NVIDIA GeForce RTX 3090 | 1024x1024 | 0.136 | 12.2965 | 0.207 | 3.52782 |
NVIDIA GeForce RTX 3080 | 512x512 | 0.036 | 8.51761 | 0.036 | 8.51761 |
NVIDIA GeForce RTX 3080 | 256x256 | 0.01 | 3.18387 | 0.01 | 3.18387 |
NVIDIA GeForce RTX 3080 | 2048x2048 | 0.863 | 86.7424 | 1.191 | 8.51761 |
NVIDIA GeForce RTX 3080 | 1024x1024 | 0.157 | 29.6888 | 0.227 | 8.51761 |
NVIDIA GeForce RTX 3070 | 512x512 | 0.051 | 10.6941 | 0.051 | 10.6941 |
NVIDIA GeForce RTX 3070 | 256x256 | 0.015 | 3.99743 | 0.015 | 3.99743 |
NVIDIA GeForce RTX 3070 | 2048x2048 | 1.217 | 96.054 | 1.482 | 10.6941 |
NVIDIA GeForce RTX 3070 | 1024x1024 | 0.223 | 37.2751 | 0.327 | 10.6941 |
SDXL
GPU | 分辨率 | 时间(秒) | 内存消耗 (%) | 平铺时间(秒) | 平铺内存 (%) |
---|---|---|---|---|---|
NVIDIA GeForce RTX 4090 | 512x512 | 0.029 | 4.95707 | 0.029 | 4.95707 |
NVIDIA GeForce RTX 4090 | 256x256 | 0.007 | 2.29666 | 0.007 | 2.29666 |
NVIDIA GeForce RTX 4090 | 2048x2048 | 0.873 | 66.3452 | 0.863 | 15.5649 |
NVIDIA GeForce RTX 4090 | 1024x1024 | 0.142 | 15.5479 | 0.143 | 15.5479 |
NVIDIA GeForce RTX 4080 SUPER | 512x512 | 0.044 | 7.46735 | 0.044 | 7.46735 |
NVIDIA GeForce RTX 4080 SUPER | 256x256 | 0.01 | 3.4597 | 0.01 | 3.4597 |
NVIDIA GeForce RTX 4080 SUPER | 2048x2048 | 1.317 | 87.1615 | 1.291 | 23.447 |
NVIDIA GeForce RTX 4080 SUPER | 1024x1024 | 0.213 | 23.4215 | 0.214 | 23.4215 |
NVIDIA GeForce RTX 3090 | 512x512 | 0.058 | 5.65638 | 0.058 | 5.65638 |
NVIDIA GeForce RTX 3090 | 256x256 | 0.016 | 2.45081 | 0.016 | 2.45081 |
NVIDIA GeForce RTX 3090 | 2048x2048 | 1.755 | 77.8239 | 1.614 | 18.4193 |
NVIDIA GeForce RTX 3090 | 1024x1024 | 0.265 | 18.4023 | 0.265 | 18.4023 |
NVIDIA GeForce RTX 3080 | 512x512 | 0.064 | 13.6568 | 0.064 | 13.6568 |
NVIDIA GeForce RTX 3080 | 256x256 | 0.018 | 5.91728 | 0.018 | 5.91728 |
NVIDIA GeForce RTX 3080 | 2048x2048 | 内存溢出 | 内存溢出 | 1.866 | 44.4717 |
NVIDIA GeForce RTX 3080 | 1024x1024 | 0.302 | 44.4308 | 0.302 | 44.4308 |
NVIDIA GeForce RTX 3070 | 512x512 | 0.093 | 17.1465 | 0.093 | 17.1465 |
NVIDIA GeForce RTX 3070 | 256x256 | 0.025 | 7.42931 | 0.026 | 7.42931 |
NVIDIA GeForce RTX 3070 | 2048x2048 | 内存溢出 | 内存溢出 | 2.674 | 55.8355 |
NVIDIA GeForce RTX 3070 | 1024x1024 | 0.443 | 55.7841 | 0.443 | 55.7841 |
可用 VAEs
模型支持可以在这里请求。
代码
从 `main` 安装 `diffusers` 以运行代码:`pip install git+https://github.com/huggingface/diffusers@main`
一个辅助方法简化了与混合推理的交互。
from diffusers.utils.remote_utils import remote_encode
基本示例
让我们对图像进行编码,然后解码以进行演示。

代码
from diffusers.utils import load_image
from diffusers.utils.remote_utils import remote_decode
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg?download=true")
latent = remote_encode(
endpoint="https://ptccx55jz97f9zgo.us-east-1.aws.endpoints.huggingface.cloud/",
scaling_factor=0.3611,
shift_factor=0.1159,
)
decoded = remote_decode(
endpoint="https://whhx50ex1aryqvw6.us-east-1.aws.endpoints.huggingface.cloud/",
tensor=latent,
scaling_factor=0.3611,
shift_factor=0.1159,
)

生成
现在让我们来看一个生成示例,我们将对图像进行编码,然后也进行远程解码!
代码
import torch
from diffusers import StableDiffusionImg2ImgPipeline
from diffusers.utils import load_image
from diffusers.utils.remote_utils import remote_decode, remote_encode
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16,
variant="fp16",
vae=None,
).to("cuda")
init_image = load_image(
"https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
)
init_image = init_image.resize((768, 512))
init_latent = remote_encode(
endpoint="https://qc6479g0aac6qwy9.us-east-1.aws.endpoints.huggingface.cloud/",
image=init_image,
scaling_factor=0.18215,
)
prompt = "A fantasy landscape, trending on artstation"
latent = pipe(
prompt=prompt,
image=init_latent,
strength=0.75,
output_type="latent",
).images
image = remote_decode(
endpoint="https://q1bj3bpq6kzilnsu.us-east-1.aws.endpoints.huggingface.cloud/",
tensor=latent,
scaling_factor=0.18215,
)
image.save("fantasy_landscape.jpg")

集成
- SD.Next:集成的 UI,直接支持混合推理。
- ComfyUI-HFRemoteVae:用于混合推理的 ComfyUI 节点。