Transformers 文档
RegNet
并获得增强的文档体验
开始
RegNet
概述
RegNet 模型在 Designing Network Design Spaces 一文中被提出,作者是 Ilija Radosavovic、Raj Prateek Kosaraju、Ross Girshick、Kaiming He、Piotr Dollár。
作者设计搜索空间以执行神经架构搜索 (NAS)。他们首先从高维搜索空间开始,并通过经验性地应用基于当前搜索空间采样的最佳性能模型的约束,迭代地缩小搜索空间。
该论文的摘要如下:
在这项工作中,我们提出了一种新的网络设计范式。我们的目标是帮助增进对网络设计的理解,并发现适用于各种环境的设计原则。我们没有专注于设计单个网络实例,而是设计了参数化网络群体的网络设计空间。整个过程类似于经典的 manual 网络设计,但提升到了设计空间级别。使用我们的方法,我们探索了网络设计的结构方面,并得出了一个低维设计空间,该空间由我们称为 RegNet 的简单、规则网络组成。RegNet 参数化的核心见解非常简单:良好网络的宽度和深度可以用量化的线性函数来解释。我们分析了 RegNet 设计空间,并得出了一些有趣的发现,这些发现与当前的网络设计实践不符。RegNet 设计空间提供了简单快速的网络,这些网络在各种 FLOP 机制中都能很好地工作。在相当的训练设置和 FLOP 下,RegNet 模型优于流行的 EfficientNet 模型,同时在 GPU 上速度提高了 5 倍。
该模型由 Francesco 贡献。该模型的 TensorFlow 版本由 sayakpaul 和 ariG23498 贡献。原始代码可以在 这里 找到。
来自 Self-supervised Pretraining of Visual Features in the Wild 的 10B 大型模型,在十亿张 Instagram 图片上训练,可在 hub 上找到
资源
一系列官方 Hugging Face 和社区(🌎 表示)资源,帮助您开始使用 RegNet。
- RegNetForImageClassification 由此 示例脚本 和 notebook 支持。
- 另请参阅:图像分类任务指南
如果您有兴趣提交资源以包含在此处,请随时打开 Pull Request,我们将对其进行审核!资源最好展示一些新的东西,而不是重复现有资源。
RegNetConfig
class transformers.RegNetConfig
< 源代码 >( num_channels = 3 embedding_size = 32 hidden_sizes = [128, 192, 512, 1088] depths = [2, 6, 12, 2] groups_width = 64 layer_type = 'y' hidden_act = 'relu' **kwargs )
参数
- num_channels (
int
, optional, 默认为 3) — 输入通道数。 - embedding_size (
int
, optional, 默认为 64) — 嵌入层的维度(隐藏层大小)。 - hidden_sizes (
List[int]
, optional, 默认为[256, 512, 1024, 2048]
) — 每个阶段的维度(隐藏层大小)。 - depths (
List[int]
, optional, 默认为[3, 4, 6, 3]
) — 每个阶段的深度(层数)。 - layer_type (
str
, optional, 默认为"y"
) — 要使用的层类型,可以是"x"
或“y”
。x
层是 ResNet 的 BottleNeck 层,其中reduction
固定为1
。而y
层是x
层,但带有 squeeze and excitation。有关这些层如何构建的详细说明,请参阅论文。 - hidden_act (
str
, optional, 默认为"relu"
) — 每个块中的非线性激活函数。如果为字符串,则支持"gelu"
、"relu"
、"selu"
和"gelu_new"
。 - downsample_in_first_stage (
bool
, optional, 默认为False
) — 如果为True
,则第一阶段将使用步长为 2 对输入进行下采样。
这是用于存储 RegNetModel 配置的配置类。它用于根据指定的参数实例化 RegNet 模型,定义模型架构。使用默认值实例化配置将生成类似于 RegNet facebook/regnet-y-040 架构的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。
示例
>>> from transformers import RegNetConfig, RegNetModel
>>> # Initializing a RegNet regnet-y-40 style configuration
>>> configuration = RegNetConfig()
>>> # Initializing a model from the regnet-y-40 style configuration
>>> model = RegNetModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
RegNetModel
class transformers.RegNetModel
< 源代码 >( config )
参数
- config (RegNetConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。请查看 from_pretrained() 方法来加载模型权重。
裸 RegNet 模型,输出原始特征,顶部没有任何特定的 head。此模型是 PyTorch 的 torch.nn.Module 子类。可将其用作常规 PyTorch 模块,并参阅 PyTorch 文档以了解与常规用法和行为相关的所有事项。
forward
< source >( pixel_values: Tensor output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.BaseModelOutputWithPoolingAndNoAttention
或 tuple(torch.FloatTensor)
参数
- pixel_values (
torch.FloatTensor
,形状为(batch_size, num_channels, height, width)
) — 像素值。像素值可以使用 AutoImageProcessor 获得。 有关详细信息,请参阅 ConvNextImageProcessor.call()。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是纯元组。
返回值
transformers.modeling_outputs.BaseModelOutputWithPoolingAndNoAttention
或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.BaseModelOutputWithPoolingAndNoAttention
或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (RegNetConfig) 和输入。
-
last_hidden_state (
torch.FloatTensor
,形状为(batch_size, num_channels, height, width)
) — 模型最后一层输出的隐藏状态序列。 -
pooler_output (
torch.FloatTensor
,形状为(batch_size, hidden_size)
) — 对空间维度进行池化操作后的最后一层隐藏状态。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(对于嵌入的输出,如果模型具有嵌入层,则为一个;对于每一层的输出,则为一个),形状为(batch_size, num_channels, height, width)
。模型在每一层输出的隐藏状态,加上可选的初始嵌入输出。
RegNetModel forward 方法,覆盖了 __call__
特殊方法。
虽然 forward 传递的配方需要在该函数内定义,但应该在之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者则会静默地忽略它们。
示例
>>> from transformers import AutoImageProcessor, RegNetModel
>>> import torch
>>> from datasets import load_dataset
>>> dataset = load_dataset("huggingface/cats-image", trust_remote_code=True)
>>> image = dataset["test"]["image"][0]
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/regnet-y-040")
>>> model = RegNetModel.from_pretrained("facebook/regnet-y-040")
>>> inputs = image_processor(image, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 1088, 7, 7]
RegNetForImageClassification
class transformers.RegNetForImageClassification
< source >( config )
参数
- config (RegNetConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。请查看 from_pretrained() 方法来加载模型权重。
RegNet 模型,顶部带有一个图像分类 head(池化特征顶部的线性层),例如用于 ImageNet。
此模型是 PyTorch 的 torch.nn.Module 子类。可将其用作常规 PyTorch 模块,并参阅 PyTorch 文档以了解与常规用法和行为相关的所有事项。
forward
< source >( pixel_values: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.ImageClassifierOutputWithNoAttention 或 tuple(torch.FloatTensor)
参数
- pixel_values (
torch.FloatTensor
,形状为(batch_size, num_channels, height, width)
) — 像素值。像素值可以使用 AutoImageProcessor 获得。 有关详细信息,请参阅 ConvNextImageProcessor.call()。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是纯元组。 - labels (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算图像分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
中。如果config.num_labels > 1
,则计算分类损失(交叉熵)。
返回值
transformers.modeling_outputs.ImageClassifierOutputWithNoAttention 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.ImageClassifierOutputWithNoAttention 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (RegNetConfig) 和输入。
- loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 分类(或回归,如果 config.num_labels==1)损失。 - logits (
torch.FloatTensor
,形状为(batch_size, config.num_labels)
) — 分类(或回归,如果 config.num_labels==1)分数(在 SoftMax 之前)。 - hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(对于嵌入的输出,如果模型具有嵌入层,则为一个;对于每个阶段的输出,则为一个),形状为(batch_size, num_channels, height, width)
。 模型在每个阶段输出的隐藏状态(也称为特征图)。
RegNetForImageClassification forward 方法,覆盖了 __call__
特殊方法。
虽然 forward 传递的配方需要在该函数内定义,但应该在之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者则会静默地忽略它们。
示例
>>> from transformers import AutoImageProcessor, RegNetForImageClassification
>>> import torch
>>> from datasets import load_dataset
>>> dataset = load_dataset("huggingface/cats-image", trust_remote_code=True)
>>> image = dataset["test"]["image"][0]
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/regnet-y-040")
>>> model = RegNetForImageClassification.from_pretrained("facebook/regnet-y-040")
>>> inputs = image_processor(image, return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_label = logits.argmax(-1).item()
>>> print(model.config.id2label[predicted_label])
tabby, tabby cat
TFRegNetModel
class transformers.TFRegNetModel
< source >( config: RegNetConfig *inputs **kwargs )
参数
- config (RegNetConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。请查看 from_pretrained() 方法来加载模型权重。
裸 RegNet 模型,输出原始特征,顶部没有任何特定的 head。此模型是 Tensorflow 的 keras.layers.Layer 子类。可将其用作常规 Tensorflow 模块,并参阅 Tensorflow 文档以了解与常规用法和行为相关的所有事项。
call
< source >( pixel_values: Tensor output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None training: bool = False ) → transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndNoAttention
或 tuple(tf.Tensor)
参数
- pixel_values (
tf.Tensor
,形状为(batch_size, num_channels, height, width)
) — 像素值。像素值可以使用 AutoImageProcessor 获得。 有关详细信息,请参阅ConveNextImageProcessor.__call__
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是纯元组。
返回值
transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndNoAttention
或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndNoAttention
或一个 tf.Tensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (RegNetConfig) 和输入。
-
last_hidden_state (
tf.Tensor
,形状为(batch_size, num_channels, height, width)
) — 模型最后一层输出的隐藏状态序列。 -
pooler_output (
tf.Tensor
,形状为(batch_size, hidden_size)
) — 对空间维度进行池化操作后的最后一层隐藏状态。 -
hidden_states (
tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —tf.Tensor
元组(对于嵌入的输出,如果模型具有嵌入层,则为一个;对于每一层的输出,则为一个),形状为(batch_size, num_channels, height, width)
。模型在每一层输出的隐藏状态,加上可选的初始嵌入输出。
TFRegNetModel forward 方法,覆盖了 __call__
特殊方法。
虽然 forward 传递的配方需要在该函数内定义,但应该在之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者则会静默地忽略它们。
示例
>>> from transformers import AutoImageProcessor, TFRegNetModel
>>> from datasets import load_dataset
>>> dataset = load_dataset("huggingface/cats-image", trust_remote_code=True)
>>> image = dataset["test"]["image"][0]
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/regnet-y-040")
>>> model = TFRegNetModel.from_pretrained("facebook/regnet-y-040")
>>> inputs = image_processor(image, return_tensors="tf")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 1088, 7, 7]
TFRegNetForImageClassification
class transformers.TFRegNetForImageClassification
< source >( config: RegNetConfig *inputs **kwargs )
参数
- config (RegNetConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。
RegNet 模型,顶部带有一个图像分类 head(池化特征顶部的线性层),例如用于 ImageNet。
此模型是 Tensorflow keras.layers.Layer 子类。将其用作常规 Tensorflow 模块,并参阅 Tensorflow 文档,了解所有与通用用法和行为相关的事项。
call
< source >( pixel_values: typing.Optional[tensorflow.python.framework.tensor.Tensor] = None labels: typing.Optional[tensorflow.python.framework.tensor.Tensor] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None training: bool = False ) → transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或 tuple(tf.Tensor)
参数
- pixel_values (形状为
(batch_size, num_channels, height, width)
的tf.Tensor
) — 像素值。像素值可以使用 AutoImageProcessor 获得。有关详细信息,请参阅ConveNextImageProcessor.__call__
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。 - labels (形状为
(batch_size,)
的tf.Tensor
, 可选) — 用于计算图像分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
中。如果config.num_labels > 1
,则计算分类损失(交叉熵)。
返回值
transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或一个 tf.Tensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (RegNetConfig) 和输入。
-
loss (形状为
(batch_size, )
的tf.Tensor
, 可选, 当提供labels
时返回) — 分类(或回归,如果 config.num_labels==1)损失。 -
logits (形状为
(batch_size, config.num_labels)
的tf.Tensor
) — 分类(或回归,如果 config.num_labels==1)得分(在 SoftMax 之前)。 -
hidden_states (
tuple(tf.Tensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —tf.Tensor
元组(embeddings 输出一个,每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出以及初始 embedding 输出处的隐藏状态。
-
attentions (
tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —tf.Tensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
TFRegNetForImageClassification 前向方法,覆盖了 __call__
特殊方法。
虽然 forward 传递的配方需要在该函数内定义,但应该在之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者则会静默地忽略它们。
示例
>>> from transformers import AutoImageProcessor, TFRegNetForImageClassification
>>> import tensorflow as tf
>>> from datasets import load_dataset
>>> dataset = load_dataset("huggingface/cats-image", trust_remote_code=True)
>>> image = dataset["test"]["image"][0]
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/regnet-y-040")
>>> model = TFRegNetForImageClassification.from_pretrained("facebook/regnet-y-040")
>>> inputs = image_processor(image, return_tensors="tf")
>>> logits = model(**inputs).logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_label = int(tf.math.argmax(logits, axis=-1))
>>> print(model.config.id2label[predicted_label])
tabby, tabby cat
FlaxRegNetModel
class transformers.FlaxRegNetModel
< source >( config: RegNetConfig input_shape = (1, 224, 224, 3) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
- config (RegNetConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。
- dtype (
jax.numpy.dtype
, 可选, 默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
,jax.numpy.float16
(在 GPU 上) 和jax.numpy.bfloat16
(在 TPU 上) 之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算将使用给定的
dtype
执行。请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。
裸 RegNet 模型输出原始特征,顶部没有任何特定的头部。
此模型继承自 FlaxPreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如,从 PyTorch 模型下载、保存和转换权重)
此模型也是 flax.linen.Module 子类。将其用作常规 Flax linen 模块,并参阅 Flax 文档,了解所有与通用用法和行为相关的事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< source >( pixel_values params: dict = None train: bool = False output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或 tuple(torch.FloatTensor)
返回值
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (<class 'transformers.models.regnet.configuration_regnet.RegNetConfig'>
) 和输入。
-
last_hidden_state (形状为
(batch_size, sequence_length, hidden_size)
的jnp.ndarray
) — 模型最后一层的输出处的隐藏状态序列。 -
pooler_output (形状为
(batch_size, hidden_size)
的jnp.ndarray
) — 序列的第一个 token(分类 token)的最后一层隐藏状态,通过线性层和 Tanh 激活函数进一步处理。线性层权重从预训练期间的下一句预测(分类)目标中训练而来。 -
hidden_states (
tuple(jnp.ndarray)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —jnp.ndarray
元组(embeddings 输出一个,每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出以及初始 embedding 输出处的隐藏状态。
-
attentions (
tuple(jnp.ndarray)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —jnp.ndarray
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxRegNetPreTrainedModel
前向方法,覆盖了 __call__
特殊方法。
虽然 forward 传递的配方需要在该函数内定义,但应该在之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者则会静默地忽略它们。
示例
>>> from transformers import AutoImageProcessor, FlaxRegNetModel
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/regnet-y-040")
>>> model = FlaxRegNetModel.from_pretrained("facebook/regnet-y-040")
>>> inputs = image_processor(images=image, return_tensors="np")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
FlaxRegNetForImageClassification
class transformers.FlaxRegNetForImageClassification
< source >( config: RegNetConfig input_shape = (1, 224, 224, 3) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
- config (RegNetConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。
- dtype (
jax.numpy.dtype
, 可选, 默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
,jax.numpy.float16
(在 GPU 上) 和jax.numpy.bfloat16
(在 TPU 上) 之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算将使用给定的
dtype
执行。请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。
RegNet 模型,顶部带有一个图像分类 head(池化特征顶部的线性层),例如用于 ImageNet。
此模型继承自 FlaxPreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如,从 PyTorch 模型下载、保存和转换权重)
此模型也是 flax.linen.Module 子类。将其用作常规 Flax linen 模块,并参阅 Flax 文档,了解所有与通用用法和行为相关的事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< source >( pixel_values params: dict = None train: bool = False output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_flax_outputs.FlaxImageClassifierOutputWithNoAttention
或 tuple(torch.FloatTensor)
返回值
transformers.modeling_flax_outputs.FlaxImageClassifierOutputWithNoAttention
或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxImageClassifierOutputWithNoAttention
或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (<class 'transformers.models.regnet.configuration_regnet.RegNetConfig'>
) 和输入。
- logits (形状为
(batch_size, config.num_labels)
的jnp.ndarray
) — 分类(或回归,如果 config.num_labels==1)得分(在 SoftMax 之前)。 - hidden_states (
tuple(jnp.ndarray)
, 可选, 当传递output_hidden_states=True
时返回或当 config.output_hidden_states=True
):jnp.ndarray
元组(embeddings 输出一个,如果模型有 embedding 层,+ 每个阶段的输出一个),形状为(batch_size, num_channels, height, width)
。模型在每个阶段输出处的隐藏状态(也称为特征图)。
FlaxRegNetPreTrainedModel
前向方法,覆盖了 __call__
特殊方法。
虽然 forward 传递的配方需要在该函数内定义,但应该在之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者则会静默地忽略它们。
示例
>>> from transformers import AutoImageProcessor, FlaxRegNetForImageClassification
>>> from PIL import Image
>>> import jax
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/regnet-y-040")
>>> model = FlaxRegNetForImageClassification.from_pretrained("facebook/regnet-y-040")
>>> inputs = image_processor(images=image, return_tensors="np")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_class_idx = jax.numpy.argmax(logits, axis=-1)
>>> print("Predicted class:", model.config.id2label[predicted_class_idx.item()])