ViTMSN
概述
ViTMSN 模型由 Mahmoud Assran、Mathilde Caron、Ishan Misra、Piotr Bojanowski、Florian Bordes、Pascal Vincent、Armand Joulin、Michael Rabbat 和 Nicolas Ballas 在《用于标签高效学习的掩码孪生网络》中提出。该论文提出了一种联合嵌入架构,用于匹配掩码 patch 和非掩码 patch 的原型。通过这种设置,他们的方法在小样本和极端小样本机制中表现出色。
该论文的摘要如下:
我们提出了掩码孪生网络 (MSN),这是一种用于学习图像表示的自监督学习框架。我们的方法将包含随机掩码 patch 的图像视图的表示与原始非掩码图像的表示相匹配。当应用于视觉 Transformer 时,这种自监督预训练策略尤其具有可扩展性,因为网络仅处理非掩码 patch。因此,MSN 提高了联合嵌入架构的可扩展性,同时产生了高语义级别的表示,在小样本图像分类中表现出竞争力。例如,在 ImageNet-1K 上,仅使用 5,000 张标注图像,我们的基础 MSN 模型实现了 72.4% 的 top-1 准确率;使用 1% 的 ImageNet-1K 标签,我们实现了 75.7% 的 top-1 准确率,为该基准上的自监督学习设定了新的最先进水平。

此模型由 sayakpaul 贡献。原始代码可以在这里找到。
使用技巧
- MSN(掩码孪生网络)是一种用于视觉 Transformer (ViT) 自监督预训练的方法。预训练目标是将分配给图像的非掩码视图的原型与分配给同一图像的掩码视图的原型相匹配。
- 作者仅发布了 backbone 的预训练权重(ImageNet-1k 预训练)。因此,要在您自己的图像分类数据集上使用它,请使用 ViTMSNForImageClassification 类,该类从 ViTMSNModel 初始化。请按照此 notebook 获取有关微调的详细教程。
- MSN 在小样本和极端小样本机制中特别有用。值得注意的是,当进行微调时,它仅使用 1% 的 ImageNet-1K 标签即可实现 75.7% 的 top-1 准确率。
使用缩放点积注意力 (SDPA)
PyTorch 包含一个原生的缩放点积注意力 (SDPA) 运算符,作为 torch.nn.functional
的一部分。此函数包含多个实现,可以根据输入和使用的硬件应用。有关更多信息,请参阅官方文档或 GPU 推理页面。
当实现可用时,torch>=2.1.1
默认使用 SDPA,但您也可以在 from_pretrained()
中设置 attn_implementation="sdpa"
以显式请求使用 SDPA。
from transformers import ViTMSNForImageClassification
model = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-base", attn_implementation="sdpa", torch_dtype=torch.float16)
...
为了获得最佳加速效果,我们建议以半精度(例如 torch.float16
或 torch.bfloat16
)加载模型。
在本地基准测试(A100-40GB,PyTorch 2.3.0,OS Ubuntu 22.04)中使用 float32
和 facebook/vit-msn-base
模型,我们观察到推理期间的以下加速效果。
批大小 | 平均推理时间 (ms),eager 模式 | 平均推理时间 (ms),sdpa 模型 | 加速,Sdpa / Eager (x) |
---|---|---|---|
1 | 7 | 6 | 1.17 |
2 | 8 | 6 | 1.33 |
4 | 8 | 6 | 1.33 |
8 | 8 | 6 | 1.33 |
资源
以下是官方 Hugging Face 和社区(🌎 表示)资源列表,可帮助您开始使用 ViT MSN。
- ViTMSNForImageClassification 由此示例脚本和notebook 提供支持。
- 另请参阅:图像分类任务指南
如果您有兴趣提交资源以包含在此处,请随时打开 Pull Request,我们将对其进行审核!资源最好能展示一些新的东西,而不是重复现有资源。
ViTMSNConfig
class transformers.ViTMSNConfig
< source >( hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.0 attention_probs_dropout_prob = 0.0 initializer_range = 0.02 layer_norm_eps = 1e-06 image_size = 224 patch_size = 16 num_channels = 3 qkv_bias = True **kwargs )
参数
- hidden_size (
int
, 可选, 默认为 768) — 编码器层和池化器层的维度。 - num_hidden_layers (
int
, 可选, 默认为 12) — Transformer 编码器中隐藏层的数量。 - num_attention_heads (
int
, 可选, 默认为 12) — Transformer 编码器中每个注意力层的注意力头数。 - intermediate_size (
int
, 可选, 默认为 3072) — Transformer 编码器中“中间” (即,前馈) 层的维度。 - hidden_act (
str
或function
, 可选, 默认为"gelu"
) — 编码器和池化器中的非线性激活函数 (函数或字符串)。如果为字符串,则支持"gelu"
、"relu"
、"selu"
和"gelu_new"
。 - hidden_dropout_prob (
float
, 可选, 默认为 0.0) — 嵌入层、编码器和池化器中所有全连接层的 dropout 概率。 - attention_probs_dropout_prob (
float
, 可选, 默认为 0.0) — 注意力概率的 dropout 比率。 - initializer_range (
float
, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - layer_norm_eps (
float
, 可选, 默认为 1e-06) — 层归一化层使用的 epsilon 值。 - image_size (
int
, 可选, 默认为 224) — 每张图像的大小(分辨率)。 - patch_size (
int
, 可选, 默认为 16) — 每个 patch 的大小(分辨率)。 - num_channels (
int
, 可选, 默认为 3) — 输入通道数。 - qkv_bias (
bool
, 可选, 默认为True
) — 是否向 queries、keys 和 values 添加偏置。
这是用于存储 ViTMSNModel 配置的配置类。它用于根据指定的参数实例化 ViT MSN 模型,定义模型架构。使用默认值实例化配置将产生与 ViT facebook/vit_msn_base 架构类似的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。
示例
>>> from transformers import ViTMSNModel, ViTMSNConfig
>>> # Initializing a ViT MSN vit-msn-base style configuration
>>> configuration = ViTConfig()
>>> # Initializing a model from the vit-msn-base style configuration
>>> model = ViTMSNModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
ViTMSNModel
class transformers.ViTMSNModel
< source >( config: ViTMSNConfig use_mask_token: bool = False )
参数
- config (ViTMSNConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
裸 ViTMSN 模型输出原始隐藏状态,顶部没有任何特定的 head。此模型是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档以了解与常规用法和行为相关的所有事项。
前向传播
< source >( pixel_values: Optional = None bool_masked_pos: Optional = None head_mask: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None interpolate_pos_encoding: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.BaseModelOutput 或 tuple(torch.FloatTensor)
参数
- pixel_values (
torch.FloatTensor
,形状为(batch_size, num_channels, height, width)
) — 像素值。像素值可以使用 AutoImageProcessor 获得。有关详细信息,请参阅 ViTImageProcessor.call()。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于置空自注意力模块中选定头的掩码。掩码值在[0, 1]
中选择:- 1 表示头未被掩蔽,
- 0 表示头被掩蔽。
- output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的hidden_states
。 - interpolate_pos_encoding (
bool
,可选) — 是否对预训练的位置编码进行插值。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - bool_masked_pos (
torch.BoolTensor
,形状为(batch_size, num_patches)
,可选) — 布尔掩码位置。指示哪些补丁被掩蔽 (1) 以及哪些未被掩蔽 (0)。
返回值
transformers.modeling_outputs.BaseModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.BaseModelOutput 或 torch.FloatTensor
的元组 (如果传递 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (ViTMSNConfig) 和输入。
-
last_hidden_state (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出端的隐藏状态序列。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组 (如果模型具有嵌入层,则为嵌入输出一个,以及每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出端的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组 (每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
ViTMSNModel 的 forward 方法,覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数内定义,但应该在之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoImageProcessor, ViTMSNModel
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/vit-msn-small")
>>> model = ViTMSNModel.from_pretrained("facebook/vit-msn-small")
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
ViTMSNForImageClassification
class transformers.ViTMSNForImageClassification
< source >( config: ViTMSNConfig )
参数
- config (ViTMSNConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
带有图像分类头的 ViTMSN 模型,例如用于 ImageNet。
此模型是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。
前向传播
< source >( pixel_values: Optional = None head_mask: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None interpolate_pos_encoding: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.ImageClassifierOutput 或 tuple(torch.FloatTensor)
参数
- pixel_values (
torch.FloatTensor
,形状为(batch_size, num_channels, height, width)
) — 像素值。像素值可以使用 AutoImageProcessor 获得。有关详细信息,请参阅 ViTImageProcessor.call()。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于置空自注意力模块中选定头的掩码。掩码值在[0, 1]
中选择:- 1 表示头未被掩蔽,
- 0 表示头被掩蔽。
- output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的hidden_states
。 - interpolate_pos_encoding (
bool
,可选) — 是否对预训练的位置编码进行插值。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。
返回值
transformers.modeling_outputs.ImageClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.ImageClassifierOutput 或 torch.FloatTensor
的元组 (如果传递 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (ViTMSNConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 分类(如果 config.num_labels==1,则为回归)损失。 -
logits (
torch.FloatTensor
,形状为(batch_size, config.num_labels)
) — 分类(如果 config.num_labels==1,则为回归)分数(在 SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组 (如果模型具有嵌入层,则为嵌入输出一个,以及每个阶段输出一个),形状为(batch_size, sequence_length, hidden_size)
。 模型在每个阶段输出端的隐藏状态(也称为特征图)。 -
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组 (每层一个),形状为(batch_size, num_heads, patch_size, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
ViTMSNForImageClassification 的 forward 方法,覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数内定义,但应该在之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoImageProcessor, ViTMSNForImageClassification
>>> import torch
>>> from PIL import Image
>>> import requests
>>> torch.manual_seed(2)
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/vit-msn-small")
>>> model = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small")
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_label = logits.argmax(-1).item()
>>> print(model.config.id2label[predicted_label])
tusker