开源 AI 食谱文档

在单个 GPU 上微调代码 LLM 以适应自定义代码

Hugging Face's logo
加入 Hugging Face 社区

并获得增强的文档体验

开始使用

Open In Colab

在单个 GPU 上微调代码 LLM 以适应自定义代码

作者:Maria Khalusova

像 Codex、StarCoder 和 Code Llama 这样的公开可用的代码 LLM 擅长生成遵循通用编程原则和语法的代码,但它们可能不符合组织的内部约定,或者不知道专有库。

在本笔记本中,我们将展示如何使用私有代码库微调代码 LLM,以增强其上下文意识并提高模型对组织需求的有用性。由于代码 LLM 非常大,以传统方式对其进行微调可能会消耗大量资源。不用担心!我们将展示如何在单个 GPU 上优化微调。

数据集

对于本示例,我们选择了 GitHub 上排名前 10 位的 Hugging Face 公开存储库。我们排除了数据中的非代码文件,例如图像、音频文件、演示文稿等。对于 Jupyter 笔记本,我们只保留了包含代码的单元格。生成的代码存储为数据集,您可以在 Hugging Face Hub 上找到 smangrul/hf-stack-v1。它包含存储库 ID、文件路径和文件内容。

模型

我们将微调 bigcode/starcoderbase-1b,这是一个在 80 多种编程语言上训练的 10 亿参数模型。这是一个门控模型,因此如果您计划使用此确切模型运行此笔记本,您需要在模型页面上获得对它的访问权限。登录您的 Hugging Face 帐户以执行此操作。

from huggingface_hub import notebook_login

notebook_login()

要开始,让我们安装所有必要的库。如您所见,除了transformersdatasets 之外,我们还将使用 peftbitsandbytesflash-attn 来优化训练。

通过采用参数高效训练技术,我们可以使用单个 A100 High-RAM GPU 运行此笔记本。

!pip install -q transformers datasets peft bitsandbytes flash-attn

现在让我们定义一些变量。随意调整它们。

MODEL = "bigcode/starcoderbase-1b"  # Model checkpoint on the Hugging Face Hub
DATASET = "smangrul/hf-stack-v1"  # Dataset on the Hugging Face Hub
DATA_COLUMN = "content"  # Column name containing the code content

SEQ_LENGTH = 2048  # Sequence length

# Training arguments
MAX_STEPS = 2000  # max_steps
BATCH_SIZE = 16  # batch_size
GR_ACC_STEPS = 1  # gradient_accumulation_steps
LR = 5e-4  # learning_rate
LR_SCHEDULER_TYPE = "cosine"  # lr_scheduler_type
WEIGHT_DECAY = 0.01  # weight_decay
NUM_WARMUP_STEPS = 30  # num_warmup_steps
EVAL_FREQ = 100  # eval_freq
SAVE_FREQ = 100  # save_freq
LOG_FREQ = 25  # log_freq
OUTPUT_DIR = "peft-starcoder-lora-a100"  # output_dir
BF16 = True  # bf16
FP16 = False  # no_fp16

# FIM trasformations arguments
FIM_RATE = 0.5  # fim_rate
FIM_SPM_RATE = 0.5  # fim_spm_rate

# LORA
LORA_R = 8  # lora_r
LORA_ALPHA = 32  # lora_alpha
LORA_DROPOUT = 0.0  # lora_dropout
LORA_TARGET_MODULES = "c_proj,c_attn,q_attn,c_fc,c_proj"  # lora_target_modules

# bitsandbytes config
USE_NESTED_QUANT = True  # use_nested_quant
BNB_4BIT_COMPUTE_DTYPE = "bfloat16"  # bnb_4bit_compute_dtype

SEED = 0
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    Trainer,
    TrainingArguments,
    logging,
    set_seed,
    BitsAndBytesConfig,
)

set_seed(SEED)

准备数据

首先加载数据。由于数据集可能很大,请确保启用流模式。流允许我们在遍历数据集时逐步加载数据,而不是一次下载整个数据集。

我们将保留前 4000 个示例作为验证集,其余所有示例将用作训练数据。

from datasets import load_dataset
import torch
from tqdm import tqdm


dataset = load_dataset(
    DATASET,
    data_dir="data",
    split="train",
    streaming=True,
)

valid_data = dataset.take(4000)
train_data = dataset.skip(4000)
train_data = train_data.shuffle(buffer_size=5000, seed=SEED)

在此步骤中,数据集仍然包含具有任意长度代码的原始数据。为了进行训练,我们需要固定长度的输入。让我们创建一个可迭代数据集,它将从文本文件流返回固定长度的标记块。

首先,让我们估计数据集每个标记的平均字符数,这将帮助我们稍后估计文本缓冲区中的标记数。默认情况下,我们只从数据集中获取 400 个示例 (nb_examples)。仅使用整个数据集的子集将降低计算成本,同时仍然提供对整体字符到标记比率的合理估计。

>>> tokenizer = AutoTokenizer.from_pretrained(MODEL, trust_remote_code=True)


>>> def chars_token_ratio(dataset, tokenizer, data_column, nb_examples=400):
...     """
...     Estimate the average number of characters per token in the dataset.
...     """

...     total_characters, total_tokens = 0, 0
...     for _, example in tqdm(zip(range(nb_examples), iter(dataset)), total=nb_examples):
...         total_characters += len(example[data_column])
...         total_tokens += len(tokenizer(example[data_column]).tokens())

...     return total_characters / total_tokens


>>> chars_per_token = chars_token_ratio(train_data, tokenizer, DATA_COLUMN)
>>> print(f"The character to token ratio of the dataset is: {chars_per_token:.2f}")
The character to token ratio of the dataset is: 2.43

字符到标记比率也可以用作文本标记质量的指标。例如,字符到标记比率为 1.0 意味着每个字符都用一个标记表示,这没有多大意义。这表明标记质量差。在标准英语文本中,一个标记通常相当于大约四个字符,这意味着字符到标记比率约为 4.0。我们可以预期代码数据集中比率会更低,但总的来说,2.0 到 3.5 之间的数字可以被认为足够好。

可选 FIM 变换

自回归语言模型通常从左到右生成序列。通过应用 FIM 变换,模型也可以学习填充文本。查看 “Efficient Training of Language Models to Fill in the Middle” paper 了解有关该技术的更多信息。我们将在此定义 FIM 变换,并在创建可迭代数据集时使用它们。但是,如果您想省略变换,可以将 fim_rate 设置为 0。

import functools
import numpy as np


# Helper function to get token ids of the special tokens for prefix, suffix and middle for FIM transformations.
@functools.lru_cache(maxsize=None)
def get_fim_token_ids(tokenizer):
    try:
        FIM_PREFIX, FIM_MIDDLE, FIM_SUFFIX, FIM_PAD = tokenizer.special_tokens_map["additional_special_tokens"][1:5]
        suffix_tok_id, prefix_tok_id, middle_tok_id, pad_tok_id = (
            tokenizer.vocab[tok] for tok in [FIM_SUFFIX, FIM_PREFIX, FIM_MIDDLE, FIM_PAD]
        )
    except KeyError:
        suffix_tok_id, prefix_tok_id, middle_tok_id, pad_tok_id = None, None, None, None
    return suffix_tok_id, prefix_tok_id, middle_tok_id, pad_tok_id


## Adapted from https://github.com/bigcode-project/Megatron-LM/blob/6c4bf908df8fd86b4977f54bf5b8bd4b521003d1/megatron/data/gpt_dataset.py
def permute(
    sample,
    np_rng,
    suffix_tok_id,
    prefix_tok_id,
    middle_tok_id,
    pad_tok_id,
    fim_rate=0.5,
    fim_spm_rate=0.5,
    truncate_or_pad=False,
):
    """
    Take in a sample (list of tokens) and perform a FIM transformation on it with a probability of fim_rate, using two FIM modes:
    PSM and SPM (with a probability of fim_spm_rate).
    """

    # The if condition will trigger with the probability of fim_rate
    # This means FIM transformations will apply to samples with a probability of fim_rate
    if np_rng.binomial(1, fim_rate):

        # Split the sample into prefix, middle, and suffix, based on randomly generated indices stored in the boundaries list.
        boundaries = list(np_rng.randint(low=0, high=len(sample) + 1, size=2))
        boundaries.sort()

        prefix = np.array(sample[: boundaries[0]], dtype=np.int64)
        middle = np.array(sample[boundaries[0] : boundaries[1]], dtype=np.int64)
        suffix = np.array(sample[boundaries[1] :], dtype=np.int64)

        if truncate_or_pad:
            # calculate the new total length of the sample, taking into account tokens indicating prefix, middle, and suffix
            new_length = suffix.shape[0] + prefix.shape[0] + middle.shape[0] + 3
            diff = new_length - len(sample)

            # trancate or pad if there's a difference in length between the new length and the original
            if diff > 0:
                if suffix.shape[0] <= diff:
                    return sample, np_rng
                suffix = suffix[: suffix.shape[0] - diff]
            elif diff < 0:
                suffix = np.concatenate([suffix, np.full((-1 * diff), pad_tok_id)])

        # With the probability of fim_spm_rateapply SPM variant of FIM transformations
        # SPM: suffix, prefix, middle
        if np_rng.binomial(1, fim_spm_rate):
            new_sample = np.concatenate(
                [
                    [prefix_tok_id, suffix_tok_id],
                    suffix,
                    [middle_tok_id],
                    prefix,
                    middle,
                ]
            )
        # Otherwise, apply the PSM variant of FIM transformations
        # PSM: prefix, suffix, middle
        else:

            new_sample = np.concatenate(
                [
                    [prefix_tok_id],
                    prefix,
                    [suffix_tok_id],
                    suffix,
                    [middle_tok_id],
                    middle,
                ]
            )
    else:
        # don't apply FIM transformations
        new_sample = sample

    return list(new_sample), np_rng

让我们定义 ConstantLengthDataset,这是一个可迭代数据集,它将返回固定长度的标记块。为此,我们将从原始数据集中读取文本缓冲区,直到达到大小限制,然后应用标记器将原始文本转换为标记化的输入。可选地,我们将在某些序列上执行 FIM 变换(受 fim_rate 控制的序列比例)。

定义后,我们可以从训练数据和验证数据创建 ConstantLengthDataset 的实例。

from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
import random

# Create an Iterable dataset that returns constant-length chunks of tokens from a stream of text files.


class ConstantLengthDataset(IterableDataset):
    """
    Iterable dataset that returns constant length chunks of tokens from stream of text files.
        Args:
            tokenizer (Tokenizer): The processor used for proccessing the data.
            dataset (dataset.Dataset): Dataset with text files.
            infinite (bool): If True the iterator is reset after dataset reaches end else stops.
            seq_length (int): Length of token sequences to return.
            num_of_sequences (int): Number of token sequences to keep in buffer.
            chars_per_token (int): Number of characters per token used to estimate number of tokens in text buffer.
            fim_rate (float): Rate (0.0 to 1.0) that sample will be permuted with FIM.
            fim_spm_rate (float): Rate (0.0 to 1.0) of FIM permuations that will use SPM.
            seed (int): Seed for random number generator.
    """

    def __init__(
        self,
        tokenizer,
        dataset,
        infinite=False,
        seq_length=1024,
        num_of_sequences=1024,
        chars_per_token=3.6,
        content_field="content",
        fim_rate=0.5,
        fim_spm_rate=0.5,
        seed=0,
    ):
        self.tokenizer = tokenizer
        self.concat_token_id = tokenizer.eos_token_id
        self.dataset = dataset
        self.seq_length = seq_length
        self.infinite = infinite
        self.current_size = 0
        self.max_buffer_size = seq_length * chars_per_token * num_of_sequences
        self.content_field = content_field
        self.fim_rate = fim_rate
        self.fim_spm_rate = fim_spm_rate
        self.seed = seed

        (
            self.suffix_tok_id,
            self.prefix_tok_id,
            self.middle_tok_id,
            self.pad_tok_id,
        ) = get_fim_token_ids(self.tokenizer)
        if not self.suffix_tok_id and self.fim_rate > 0:
            print("FIM is not supported by tokenizer, disabling FIM")
            self.fim_rate = 0

    def __iter__(self):
        iterator = iter(self.dataset)
        more_examples = True
        np_rng = np.random.RandomState(seed=self.seed)
        while more_examples:
            buffer, buffer_len = [], 0
            while True:
                if buffer_len >= self.max_buffer_size:
                    break
                try:
                    buffer.append(next(iterator)[self.content_field])
                    buffer_len += len(buffer[-1])
                except StopIteration:
                    if self.infinite:
                        iterator = iter(self.dataset)
                    else:
                        more_examples = False
                        break
            tokenized_inputs = self.tokenizer(buffer, truncation=False)["input_ids"]
            all_token_ids = []

            for tokenized_input in tokenized_inputs:
                # optionally do FIM permutations
                if self.fim_rate > 0:
                    tokenized_input, np_rng = permute(
                        tokenized_input,
                        np_rng,
                        self.suffix_tok_id,
                        self.prefix_tok_id,
                        self.middle_tok_id,
                        self.pad_tok_id,
                        fim_rate=self.fim_rate,
                        fim_spm_rate=self.fim_spm_rate,
                        truncate_or_pad=False,
                    )

                all_token_ids.extend(tokenized_input + [self.concat_token_id])
            examples = []
            for i in range(0, len(all_token_ids), self.seq_length):
                input_ids = all_token_ids[i : i + self.seq_length]
                if len(input_ids) == self.seq_length:
                    examples.append(input_ids)
            random.shuffle(examples)
            for example in examples:
                self.current_size += 1
                yield {
                    "input_ids": torch.LongTensor(example),
                    "labels": torch.LongTensor(example),
                }


train_dataset = ConstantLengthDataset(
    tokenizer,
    train_data,
    infinite=True,
    seq_length=SEQ_LENGTH,
    chars_per_token=chars_per_token,
    content_field=DATA_COLUMN,
    fim_rate=FIM_RATE,
    fim_spm_rate=FIM_SPM_RATE,
    seed=SEED,
)
eval_dataset = ConstantLengthDataset(
    tokenizer,
    valid_data,
    infinite=False,
    seq_length=SEQ_LENGTH,
    chars_per_token=chars_per_token,
    content_field=DATA_COLUMN,
    fim_rate=FIM_RATE,
    fim_spm_rate=FIM_SPM_RATE,
    seed=SEED,
)

准备模型

现在数据已准备就绪,该加载模型了!我们将加载模型的量化版本。

这将使我们能够减少内存使用量,因为量化使用更少的位来表示数据。我们将使用 bitsandbytes 库来量化模型,因为它与 transformers 有很好的集成。我们所要做的就是定义一个 bitsandbytes 配置,然后在加载模型时使用它。

4 位量化有不同的变体,但通常建议使用 NF4 量化以获得更好的性能 (bnb_4bit_quant_type="nf4")。

bnb_4bit_use_double_quant 选项在第一个量化之后添加第二个量化,以每个参数节省额外的 0.4 位。

要了解有关量化的更多信息,请查看 “Making LLMs even more accessible with bitsandbytes, 4-bit quantization and QLoRA” blog post

定义后,将配置传递给 from_pretrained 方法以加载模型的量化版本。

from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
from peft.tuners.lora import LoraLayer

load_in_8bit = False

# 4-bit quantization
compute_dtype = getattr(torch, BNB_4BIT_COMPUTE_DTYPE)

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=compute_dtype,
    bnb_4bit_use_double_quant=USE_NESTED_QUANT,
)

device_map = {"": 0}

model = AutoModelForCausalLM.from_pretrained(
    MODEL,
    load_in_8bit=load_in_8bit,
    quantization_config=bnb_config,
    device_map=device_map,
    use_cache=False,  # We will be using gradient checkpointing
    trust_remote_code=True,
    use_flash_attention_2=True,
)

在将量化模型用于训练时,您需要调用 prepare_model_for_kbit_training() 函数以预处理量化模型以进行训练。

model = prepare_model_for_kbit_training(model)

现在量化模型已准备就绪,我们可以设置 LoRA 配置。LoRA 通过大幅减少可训练参数的数量,使微调更有效。

要使用 LoRA 技术训练模型,我们需要将基本模型包装为 PeftModel。这涉及使用 LoraConfig 定义 LoRA 配置,并使用 LoraConfig 使用 get_peft_model() 包装原始模型。

要了解有关 LoRA 及其参数的更多信息,请参阅 PEFT 文档

>>> # Set up lora
>>> peft_config = LoraConfig(
...     lora_alpha=LORA_ALPHA,
...     lora_dropout=LORA_DROPOUT,
...     r=LORA_R,
...     bias="none",
...     task_type="CAUSAL_LM",
...     target_modules=LORA_TARGET_MODULES.split(","),
... )

>>> model = get_peft_model(model, peft_config)
>>> model.print_trainable_parameters()
trainable params: 5,554,176 || all params: 1,142,761,472 || trainable%: 0.4860310866343243

如您所见,通过应用 LoRA 技术,我们现在只需要训练不到 1% 的参数。

训练模型

现在我们已经准备好了数据并优化了模型,我们可以将所有内容整合在一起以开始训练。

要实例化 Trainer,您需要定义训练配置。最重要的配置是 TrainingArguments,它是一个包含所有配置训练属性的类。

这些与您可能运行的任何其他类型的模型训练类似,因此我们在这里将不再详细介绍。

train_data.start_iteration = 0


training_args = TrainingArguments(
    output_dir=f"Your_HF_username/{OUTPUT_DIR}",
    dataloader_drop_last=True,
    evaluation_strategy="steps",
    save_strategy="steps",
    max_steps=MAX_STEPS,
    eval_steps=EVAL_FREQ,
    save_steps=SAVE_FREQ,
    logging_steps=LOG_FREQ,
    per_device_train_batch_size=BATCH_SIZE,
    per_device_eval_batch_size=BATCH_SIZE,
    learning_rate=LR,
    lr_scheduler_type=LR_SCHEDULER_TYPE,
    warmup_steps=NUM_WARMUP_STEPS,
    gradient_accumulation_steps=GR_ACC_STEPS,
    gradient_checkpointing=True,
    fp16=FP16,
    bf16=BF16,
    weight_decay=WEIGHT_DECAY,
    push_to_hub=True,
    include_tokens_per_second=True,
)

最后,实例化 Trainer 并调用 train 方法。

>>> trainer = Trainer(model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset)

>>> print("Training...")
>>> trainer.train()
Training...

最后,您可以将微调后的模型推送到您的 Hub 存储库中以与您的团队共享。

trainer.push_to_hub()

推断

模型上传到 Hub 后,我们可以将其用于推断。为此,我们首先初始化原始基本模型及其标记器。接下来,我们需要将微调后的权重与基本模型合并。

from peft import PeftModel
import torch

# load the original model first
tokenizer = AutoTokenizer.from_pretrained(MODEL, trust_remote_code=True)
base_model = AutoModelForCausalLM.from_pretrained(
    MODEL,
    quantization_config=None,
    device_map=None,
    trust_remote_code=True,
    torch_dtype=torch.bfloat16,
).cuda()

# merge fine-tuned weights with the base model
peft_model_id = f"Your_HF_username/{OUTPUT_DIR}"
model = PeftModel.from_pretrained(base_model, peft_model_id)
model.merge_and_unload()

现在我们可以使用合并后的模型进行推断。为了方便起见,我们将定义一个 get_code_completion - 随意尝试文本生成参数!

def get_code_completion(prefix, suffix):
    text = prompt = f"""<fim_prefix>{prefix}<fim_suffix>{suffix}<fim_middle>"""
    model.eval()
    outputs = model.generate(
        input_ids=tokenizer(text, return_tensors="pt").input_ids.cuda(),
        max_new_tokens=128,
        temperature=0.2,
        top_k=50,
        top_p=0.95,
        do_sample=True,
        repetition_penalty=1.0,
    )
    return tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]

现在,要获得代码补全,我们所要做的就是调用 get_code_complete 函数,并将我们要补全的前几行作为前缀传递,并将空字符串作为后缀传递。

>>> prefix = """from peft import LoraConfig, TaskType, get_peft_model
... from transformers import AutoModelForCausalLM
... peft_config = LoraConfig(
... """
>>> suffix = """"""

... print(get_code_completion(prefix, suffix))
from peft import LoraConfig, TaskType, get_peft_model
from transformers import AutoModelForCausalLM
peft_config = LoraConfig(
    task_type=TaskType.CAUSAL_LM,
    r=8,
    lora_alpha=32,
    target_modules=["q_proj", "v_proj"],
    lora_dropout=0.1,
    bias="none",
    modules_to_save=["q_proj", "v_proj"],
    inference_mode=False,
)
model = AutoModelForCausalLM.from_pretrained("gpt2")
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()

作为之前在本笔记本中使用过 PEFT 库的人,您可以看到为创建 LoraConfig 生成的结果相当不错!

如果您回到我们实例化用于推断的模型的单元格,并注释掉我们合并微调后的权重的行,您可以看到原始模型将为完全相同的前缀生成什么

>>> prefix = """from peft import LoraConfig, TaskType, get_peft_model
... from transformers import AutoModelForCausalLM
... peft_config = LoraConfig(
... """
>>> suffix = """"""

... print(get_code_completion(prefix, suffix))
from peft import LoraConfig, TaskType, get_peft_model
from transformers import AutoModelForCausalLM
peft_config = LoraConfig(
    model_name_or_path="facebook/wav2vec2-base-960h",
    num_labels=1,
    num_features=1,
    num_hidden_layers=1,
    num_attention_heads=1,
    num_hidden_layers_per_attention_head=1,
    num_attention_heads_per_hidden_layer=1,
    hidden_size=1024,
    hidden_dropout_prob=0.1,
    hidden_act="gelu",
    hidden_act_dropout_prob=0.1,
    hidden

虽然它是 Python 语法,但您可以看到原始模型并不了解 LoraConfig 应该做什么。

要了解这种微调与完全微调相比如何,以及如何在 VS Code 中通过推断端点或本地使用这种模型作为您的副驾驶,请查看 “Personal Copilot: Train Your Own Coding Assistant” blog post。本笔记本是对原始博文的补充。

< > GitHub 上更新