Diffusers 文档

SD3ControlNetModel

Hugging Face's logo
加入 Hugging Face 社区

并获得增强的文档体验

开始使用

SD3ControlNetModel

SD3ControlNetModel 是 ControlNet 为 Stable Diffusion 3 的一个实现。

ControlNet 模型在 Adding Conditional Control to Text-to-Image Diffusion Models 这篇论文中被介绍,作者是 Lvmin Zhang, Anyi Rao, Maneesh Agrawala。它通过在模型上添加额外的输入(例如边缘图、深度图、分割图和姿势检测的关键点)来提供对文本到图像生成更高级别的控制。

该论文的摘要是

我们提出了 ControlNet,一种神经网络架构,用于向大型预训练的文本到图像扩散模型添加空间条件控制。ControlNet 锁定生产就绪的大型扩散模型,并重用其经过数十亿张图像预训练的深层和鲁棒的编码层,作为学习各种条件控制的强大骨干。该神经网络架构与“零卷积”(zero convolutions)(零初始化的卷积层)相连,这些卷积层逐渐从零开始增长参数,并确保没有有害噪声会影响微调。我们使用 Stable Diffusion 测试了各种条件控制,例如,边缘、深度、分割、人体姿势等,使用单个或多个条件,有或没有提示。结果表明,ControlNet 的训练对于小型(<50k)和大型(>1m)数据集都是稳健的。广泛的结果表明,ControlNet 可以促进更广泛的应用,以控制图像扩散模型。

从原始格式加载

默认情况下,SD3ControlNetModel 应该使用 from_pretrained() 加载。

from diffusers import StableDiffusion3ControlNetPipeline
from diffusers.models import SD3ControlNetModel, SD3MultiControlNetModel

controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny")
pipe = StableDiffusion3ControlNetPipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet)

SD3ControlNetModel

class diffusers.SD3ControlNetModel

< >

( sample_size: int = 128 patch_size: int = 2 in_channels: int = 16 num_layers: int = 18 attention_head_dim: int = 64 num_attention_heads: int = 18 joint_attention_dim: int = 4096 caption_projection_dim: int = 1152 pooled_projection_dim: int = 2048 out_channels: int = 16 pos_embed_max_size: int = 96 extra_conditioning_channels: int = 0 dual_attention_layers: typing.Tuple[int, ...] = () qk_norm: typing.Optional[str] = None pos_embed_type: typing.Optional[str] = 'sincos' use_pos_embed: bool = True force_zeros_for_pooled_projection: bool = True )

enable_forward_chunking

< >

( chunk_size: typing.Optional[int] = None dim: int = 0 )

参数

  • chunk_size (int, 可选) — 前馈层 (feed-forward layers) 的 chunk 大小。如果未指定,将单独对 dim=dim 的每个张量运行前馈层。
  • dim (int, 可选, 默认为 0) — 应该在其上进行分块前馈计算的维度。在 dim=0 (batch) 或 dim=1 (序列长度) 之间选择。

设置 attention processor 以使用 feed forward chunking

forward

< >

( hidden_states: FloatTensor controlnet_cond: Tensor conditioning_scale: float = 1.0 encoder_hidden_states: FloatTensor = None pooled_projections: FloatTensor = None timestep: LongTensor = None joint_attention_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None return_dict: bool = True )

参数

  • hidden_states (torch.FloatTensor,形状为 (batch size, channel, height, width)) — 输入 hidden_states
  • controlnet_cond (torch.Tensor) — 形状为 (batch_size, sequence_length, hidden_size) 的条件输入张量。
  • conditioning_scale (float, 默认为 1.0) — ControlNet 输出的缩放因子。
  • encoder_hidden_states (形状为 (batch size, sequence_len, embed_dims)torch.FloatTensor) — 要使用的条件嵌入(从输入条件(如提示)计算出的嵌入)。
  • pooled_projections (形状为 (batch_size, projection_dim)torch.FloatTensor) — 从输入条件的嵌入投影得到的嵌入。
  • timestep ( torch.LongTensor) — 用于指示去噪步骤。
  • joint_attention_kwargs (dict, 可选) — 一个 kwargs 字典,如果指定,则会传递给 diffusers.models.attention_processorself.processor 下定义的 AttentionProcessor
  • return_dict (bool, 可选, 默认为 True) — 是否返回 ~models.transformer_2d.Transformer2DModelOutput 而不是普通元组。

The SD3Transformer2DModel 的 forward 方法。

fuse_qkv_projections

< >

( )

启用融合的 QKV 投影。对于自注意力模块,所有投影矩阵(即,查询、键、值)都将融合。对于交叉注意力模块,键和值投影矩阵将被融合。

此 API 为 🧪 实验性 API。

set_attn_processor

< >

( processor: typing.Union[diffusers.models.attention_processor.AttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor2_0, diffusers.models.attention_processor.JointAttnProcessor2_0, diffusers.models.attention_processor.PAGJointAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGJointAttnProcessor2_0, diffusers.models.attention_processor.FusedJointAttnProcessor2_0, diffusers.models.attention_processor.AllegroAttnProcessor2_0, diffusers.models.attention_processor.AuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FusedAuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.CogVideoXAttnProcessor2_0, diffusers.models.attention_processor.FusedCogVideoXAttnProcessor2_0, diffusers.models.attention_processor.XFormersAttnAddedKVProcessor, diffusers.models.attention_processor.XFormersAttnProcessor, diffusers.models.attention_processor.XLAFlashAttnProcessor2_0, diffusers.models.attention_processor.AttnProcessorNPU, diffusers.models.attention_processor.AttnProcessor2_0, diffusers.models.attention_processor.MochiVaeAttnProcessor2_0, diffusers.models.attention_processor.MochiAttnProcessor2_0, diffusers.models.attention_processor.StableAudioAttnProcessor2_0, diffusers.models.attention_processor.HunyuanAttnProcessor2_0, diffusers.models.attention_processor.FusedHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.LuminaAttnProcessor2_0, diffusers.models.attention_processor.FusedAttnProcessor2_0, diffusers.models.attention_processor.CustomDiffusionXFormersAttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor2_0, diffusers.models.attention_processor.SlicedAttnProcessor, diffusers.models.attention_processor.SlicedAttnAddedKVProcessor, diffusers.models.attention_processor.SanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGSanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySanaLinearAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleLinearAttention, diffusers.models.attention_processor.SanaMultiscaleAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleAttentionProjection, diffusers.models.attention_processor.IPAdapterAttnProcessor, diffusers.models.attention_processor.IPAdapterAttnProcessor2_0, diffusers.models.attention_processor.IPAdapterXFormersAttnProcessor, diffusers.models.attention_processor.SD3IPAdapterJointAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.LoRAAttnProcessor, diffusers.models.attention_processor.LoRAAttnProcessor2_0, diffusers.models.attention_processor.LoRAXFormersAttnProcessor, diffusers.models.attention_processor.LoRAAttnAddedKVProcessor]]] )

参数

  • processor (AttentionProcessordict 或仅 AttentionProcessor) — 实例化的处理器类或处理器类字典,它将被设置为所有 Attention 层的处理器。

    如果 processor 是一个字典,则键需要定义到相应交叉注意力处理器的路径。在设置可训练的注意力处理器时,强烈建议这样做。

设置用于计算注意力的注意力处理器。

unfuse_qkv_projections

< >

( )

如果已启用,则禁用融合的 QKV 投影。

此 API 为 🧪 实验性 API。

SD3ControlNetOutput

class diffusers.models.controlnets.SD3ControlNetOutput

< >

( controlnet_block_samples: typing.Tuple[torch.Tensor] )

< > 在 GitHub 上更新