Diffusers 文档

T2I-Adapter

Hugging Face's logo
加入 Hugging Face 社区

并获得增强的文档体验

开始使用

T2I-Adapter

T2I-Adapter 是一种适配器,可实现类似 ControlNet 的可控生成。T2I-Adapter 通过学习控制信号(例如,深度图)与预训练模型内部知识之间的*映射*来工作。适配器插入到基础模型中,以便在生成过程中根据控制信号提供额外指导。

加载一个以特定控制(如 Canny 边缘)为条件的 T2I-Adapter,并将其传递给 from_pretrained() 中的流水线。

import torch
from diffusers import T2IAdapter, StableDiffusionXLAdapterPipeline, AutoencoderKL

t2i_adapter = T2IAdapter.from_pretrained(
    "TencentARC/t2i-adapter-canny-sdxl-1.0",
    torch_dtype=torch.float16,
)

使用 opencv-python 生成 Canny 图像。

import cv2
import numpy as np
from PIL import Image
from diffusers.utils import load_image

original_image = load_image(
    "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/non-enhanced-prompt.png"
)

image = np.array(original_image)

low_threshold = 100
high_threshold = 200

image = cv2.Canny(image, low_threshold, high_threshold)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)

将 Canny 图像传递给流水线以生成图像。

vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipeline = StableDiffusionXLAdapterPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    adapter=t2i_adapter,
    vae=vae,
    torch_dtype=torch.float16,
).to("cuda")

prompt = """
A photorealistic overhead image of a cat reclining sideways in a flamingo pool floatie holding a margarita. 
The cat is floating leisurely in the pool and completely relaxed and happy.
"""

pipeline(
    prompt, 
    image=canny_image,
    num_inference_steps=100, 
    guidance_scale=10,
).images[0]
Generated image (prompt only)
原始图像
Control image (Canny edges)
Canny 图像
Generated image (ControlNet + prompt)
生成的图像

MultiAdapter

您可以使用 MultiAdapter 类组合多个控制,例如 Canny 图像和深度图。

下面的示例组合了 Canny 图像和深度图。

将控制图像和 T2I-Adapter 作为列表加载。

import torch
from diffusers.utils import load_image
from diffusers import StableDiffusionXLAdapterPipeline, AutoencoderKL, MultiAdapter, T2IAdapter

canny_image = load_image(
    "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/canny-cat.png"
)
depth_image = load_image(
    "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_depth_image.png"
)
controls = [canny_image, depth_image]
prompt = ["""
a relaxed rabbit sitting on a striped towel next to a pool with a tropical drink nearby, 
bright sunny day, vacation scene, 35mm photograph, film, professional, 4k, highly detailed
"""]

adapters = MultiAdapter(
    [
        T2IAdapter.from_pretrained("TencentARC/t2i-adapter-canny-sdxl-1.0", torch_dtype=torch.float16),
        T2IAdapter.from_pretrained("TencentARC/t2i-adapter-depth-midas-sdxl-1.0", torch_dtype=torch.float16),
    ]
)

将适配器、提示和控制图像传递给 StableDiffusionXLAdapterPipeline。使用 adapter_conditioning_scale 参数来确定每个控制的权重。

vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipeline = StableDiffusionXLAdapterPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    torch_dtype=torch.float16,
    vae=vae,
    adapter=adapters,
).to("cuda")

pipeline(
    prompt,
    image=controls,
    height=1024,
    width=1024,
    adapter_conditioning_scale=[0.7, 0.7]
).images[0]
Generated image (prompt only)
Canny 图像
Control image (Canny edges)
深度图
Generated image (ControlNet + prompt)
生成的图像
< > 在 GitHub 上更新

© . This site is unofficial and not affiliated with Hugging Face, Inc.