Transformers 文档

SmolLM3

Hugging Face's logo
加入 Hugging Face 社区

并获得增强的文档体验

开始使用

PyTorch FlashAttention SDPA

SmolLM3

SmolLM3 是一种完全开放的紧凑型语言模型,旨在高效部署的同时保持强大的性能。它采用带有分组查询注意力 (GQA) 的 Transformer 解码器架构,以减少 kv 缓存,并且没有 RoPE,从而提高了长上下文任务的性能。它使用多阶段训练方法,在高质量的公共数据集上进行训练,涵盖网络、代码和数学领域。该模型是多语言的,支持非常大的上下文长度。指令变体针对推理和工具使用进行了优化。

点击右侧边栏中的 SmolLM3 模型,查看更多将 SmolLM3 应用于不同语言任务的示例。

以下示例演示了如何使用 PipelineAutoModel 以及通过命令行使用指令调优模型生成文本。

流水线
自动模型
Transformers CLI
import torch
from transformers import pipeline

pipe = pipeline(
    task="text-generation",
    model="HuggingFaceTB/SmolLM3-3B",
    torch_dtype=torch.bfloat16,
    device_map=0
)

messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "Tell me about yourself."},
]
outputs = pipe(messages, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"][-1]['content'])

量化通过以较低精度表示权重来减少大型模型的内存负担。有关更多可用量化后端,请参阅量化概述。

以下示例使用 bitsandbytes 将权重量化为 4 位。

# pip install -U flash-attn --no-build-isolation
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig

quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_use_double_quant=True,
)

tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM3-3B")
model = AutoModelForCausalLM.from_pretrained(
    "HuggingFaceTB/SmolLM3-3B",
    torch_dtype=torch.bfloat16,
    device_map="auto",
    quantization_config=quantization_config,
    attn_implementation="flash_attention_2"
)

inputs = tokenizer("Gravity is the force", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

注意事项

  • 请确保您的 Transformers 库版本是最新的。SmolLM3 需要 Transformers >=4.53.0 才能获得全面支持。

SmolLM3Config

class transformers.SmolLM3Config

< >

( vocab_size = 128256 hidden_size = 2048 intermediate_size = 11008 num_hidden_layers = 36 num_attention_heads = 16 num_key_value_heads = 4 hidden_act = 'silu' max_position_embeddings = 32768 initializer_range = 0.02 rms_norm_eps = 1e-06 use_cache = True pad_token_id = 128004 bos_token_id = 128000 eos_token_id = 128001 rope_theta = 2000000.0 rope_scaling = None use_sliding_window = False sliding_window = None no_rope_layers = None no_rope_layer_interval = 4 layer_types = None attention_bias = False attention_dropout = 0.0 **kwargs )

参数

  • vocab_size (int, 可选, 默认为 128256) — SmolLM3 模型的词汇量大小。定义了调用 SmolLM3Model 时可由 inputs_ids 表示的不同 token 的数量。
  • hidden_size (int, 可选, 默认为 2048) — 隐藏表示的维度。
  • intermediate_size (int, 可选, 默认为 11008) — MLP 表示的维度。
  • num_hidden_layers (int, 可选, 默认为 36) — Transformer 编码器中的隐藏层数量。
  • num_attention_heads (int, 可选, 默认为 16) — Transformer 编码器中每个注意力层的注意力头数量。
  • num_key_value_heads (int, 可选, 默认为 4) — 用于实现分组查询注意力(Grouped Query Attention)的 key_value 头数量。如果 num_key_value_heads=num_attention_heads,模型将使用多头注意力(MHA);如果 num_key_value_heads=1,模型将使用多查询注意力(MQA),否则使用 GQA。将多头检查点转换为 GQA 检查点时,每个分组的 key 和 value 头应通过对其分组中的所有原始头进行均值池化来构建。有关更多详细信息,请参阅 这篇论文。如果未指定,默认为 16
  • hidden_act (strfunction, 可选, 默认为 "silu") — 解码器中的非线性激活函数(函数或字符串)。
  • max_position_embeddings (int, 可选, 默认为 32768) — 此模型可能使用的最大序列长度。
  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。
  • rms_norm_eps (float, 可选, 默认为 1e-06) — RMS 归一化层使用的 epsilon 值。
  • use_cache (bool, 可选, 默认为 True) — 模型是否应返回最后一个 key/values 注意力(并非所有模型都使用)。仅当 config.is_decoder=True 时相关。
  • pad_token_id (int, 可选, 默认为 128004) — 填充 token 的 id。
  • bos_token_id (int, 可选, 默认为 128000) — 句子起始 token 的 id。
  • eos_token_id (int, 可选, 默认为 128001) — 句子结束 token 的 id。
  • rope_theta (float, 可选, 默认为 2000000.0) — RoPE 嵌入的基本周期。
  • rope_scaling (Dict, 可选) — 包含 RoPE 嵌入缩放配置的字典。注意:如果您应用新的 RoPE 类型并期望模型在更长的 max_position_embeddings 上工作,我们建议您相应地更新此值。预期内容:rope_type (str): 要使用的 RoPE 子变体。可以是 ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'llama3'] 之一,其中 'default' 是原始 RoPE 实现。factor (float, 可选): 除 'default' 外的所有 RoPE 类型均使用。应用于 RoPE 嵌入的缩放因子。在大多数缩放类型中,因子 x 将使模型能够处理长度为 x * 原始最大预训练长度的序列。original_max_position_embeddings (int, 可选): 与 'dynamic'、'longrope' 和 'llama3' 一起使用。预训练期间使用的原始最大位置嵌入。attention_factor (float, 可选): 与 'yarn' 和 'longrope' 一起使用。应用于注意力计算的缩放因子。如果未指定,默认为实现推荐的值,使用 factor 字段推断建议值。beta_fast (float, 可选): 仅与 'yarn' 一起使用。在线性斜坡函数中设置外推(仅)边界的参数。如果未指定,默认为 32。beta_slow (float, 可选): 仅与 'yarn' 一起使用。在线性斜坡函数中设置插值(仅)边界的参数。如果未指定,默认为 1。short_factor (List[float], 可选): 仅与 'longrope' 一起使用。应用于短上下文(< original_max_position_embeddings)的缩放因子。必须是长度与隐藏大小除以注意力头数再除以 2 相同的数字列表。long_factor (List[float], 可选): 仅与 'longrope' 一起使用。应用于长上下文(< original_max_position_embeddings)的缩放因子。必须是长度与隐藏大小除以注意力头数再除以 2 相同的数字列表。low_freq_factor (float, 可选): 仅与 'llama3' 一起使用。应用于 RoPE 低频分量的缩放因子。high_freq_factor (float, 可选): 仅与 'llama3' 一起使用。应用于 RoPE 高频分量的缩放因子。
  • use_sliding_window (bool, 可选, 默认为 False) — 是否使用滑动窗口注意力。
  • sliding_window (int, 可选) — 滑动窗口注意力 (SWA) 的窗口大小。如果未指定,默认为 None
  • no_rope_layers (List[int], 可选) — 列表,长度至少与模型层数相同。索引位置上的 1 表示对应层将使用 RoPE,而 0 表示它是 NoPE 层。
  • no_rope_layer_interval (int, 可选, 默认为 4) — 如果 no_rope_layersNone,则将每 no_rope_layer_interval 层创建一个 NoPE 层。
  • layer_types (list, 可选) — 每层的注意力模式。根据滑动窗口和 NoPE 设置自动计算。
  • attention_bias (bool, 可选, 默认为 False) — 在自注意力期间,是否在查询、键、值和输出投影层中使用偏置。
  • attention_dropout (float, 可选, 默认为 0.0) — 注意力概率的 dropout 比率。

这是一个配置类,用于存储 SmolLM3Model 的配置。它用于根据指定的参数实例化 SmolLM3 模型,定义模型架构。使用默认值实例化配置将生成与 SmolLM3 3B 类似的配置。例如 HuggingFaceTB/SmolLM3-3B

配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请参阅 PretrainedConfig 的文档。

>>> from transformers import SmolLM3Model, SmolLM3Config

>>> # Initializing a SmolLM3 style configuration
>>> configuration = SmolLM3Config()

>>> # Initializing a model from the SmolLM3 style configuration
>>> model = SmolLM3Model(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

SmolLM3Model

class transformers.SmolLM3Model

< >

( config: SmolLM3Config )

参数

  • config (SmolLM3Config) — 包含模型所有参数的模型配置类。用配置文件初始化并不会加载与模型相关的权重,只加载配置。要加载模型权重,请查看 from_pretrained() 方法。

裸 SmolLM3 模型,输出原始隐藏状态,顶部没有任何特定头部。

此模型继承自 PreTrainedModel。请查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。

此模型也是 PyTorch torch.nn.Module 的子类。将其作为常规 PyTorch 模块使用,并参考 PyTorch 文档中与通用用法和行为相关的所有事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None **flash_attn_kwargs: typing_extensions.Unpack[transformers.modeling_flash_attention_utils.FlashAttentionKwargs] ) transformers.modeling_outputs.BaseModelOutputWithPasttuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor, 形状为 (batch_size, sequence_length), 可选) — 词汇表中输入序列 token 的索引。默认情况下会忽略填充。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.Tensor, 形状为 (batch_size, sequence_length), 可选) — 用于避免对填充 token 索引执行注意力的掩码。掩码值选择在 [0, 1] 中:

    • 1 表示**未被掩码**的 token,
    • 0 表示**被掩码**的 token。

    什么是注意力掩码?

  • position_ids (torch.LongTensor, 形状为 (batch_size, sequence_length), 可选) — 每个输入序列 token 在位置嵌入中的位置索引。选择范围为 [0, config.n_positions - 1]

    什么是位置 ID?

  • past_key_values (~cache_utils.Cache, 可选) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在解码上一阶段返回的 past_key_values,当 use_cache=Trueconfig.use_cache=True 时。

    允许两种格式:

    • Cache 实例,详见我们的 kv cache 指南
    • 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含两个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量)。这也被称为传统缓存格式。

    模型将输出与输入相同的缓存格式。如果没有传入 past_key_values,将返回传统缓存格式。

    如果使用了 past_key_values,用户可以选择只输入形状为 (batch_size, 1) 的最后一个 input_ids(那些没有将其过去的键值状态提供给此模型的),而不是所有形状为 (batch_size, sequence_length)input_ids

  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,你可以直接传入嵌入表示,而不是传入 input_ids。如果你想对如何将 input_ids 索引转换为关联向量有更多的控制,而不是使用模型内部的嵌入查找矩阵,这将非常有用。
  • use_cache (bool, 可选) — 如果设置为 True,将返回 past_key_values 键值状态,可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。更多详情请参阅返回张量中的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。更多详情请参阅返回张量中的 hidden_states
  • cache_position (torch.LongTensor,形状为 (sequence_length)可选) — 序列中输入序列 token 位置的索引。与 position_ids 不同,此张量不受填充影响。它用于在正确位置更新缓存并推断完整的序列长度。

返回

transformers.modeling_outputs.BaseModelOutputWithPasttuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithPasttorch.FloatTensor 的元组(如果传入 return_dict=False 或当 config.return_dict=False 时),根据配置(SmolLM3Config)和输入包含各种元素。

  • last_hidden_state (torch.FloatTensor, 形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

    如果使用了 past_key_values,则只输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个隐藏状态。

  • past_key_values (Cache, 可选, 当传入 use_cache=True 或当 config.use_cache=True 时返回) — 这是一个 Cache 实例。更多详情请参阅我们的 kv cache 指南

    包含预先计算的隐藏状态(自注意力块中的键和值,以及如果 config.is_encoder_decoder=True 则可选地包含交叉注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传入 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 每个层的输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传入 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

SmolLM3Model 的前向方法,覆盖了 __call__ 特殊方法。

尽管前向传播的实现需要在该函数中定义,但之后应该调用 Module 实例,而不是直接调用此函数,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

SmolLM3ForCausalLM

class transformers.SmolLM3ForCausalLM

< >

( config )

参数

  • config (SmolLM3ForCausalLM) — 包含模型所有参数的模型配置类。使用配置文件初始化并不会加载与模型相关的权重,仅加载配置。请查看 from_pretrained() 方法来加载模型权重。

用于因果语言建模的 Smollm3 模型。

此模型继承自 PreTrainedModel。请查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。

此模型也是 PyTorch torch.nn.Module 的子类。将其作为常规 PyTorch 模块使用,并参考 PyTorch 文档中与通用用法和行为相关的所有事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None logits_to_keep: typing.Union[int, torch.Tensor] = 0 **kwargs: typing_extensions.Unpack[transformers.models.smollm3.modeling_smollm3.KwargsForCausalLM] ) transformers.modeling_outputs.CausalLMOutputWithPasttuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列 token 的索引。默认情况下会忽略填充。

    可以使用 AutoTokenizer 获取索引。有关详情,请参见 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免在填充 token 索引上执行注意力的掩码。掩码值选择在 [0, 1] 之间:

    • 1 表示未被掩盖的 token,
    • 0 表示被掩盖的 token。

    什么是注意力掩码?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列 token 在位置嵌入中的位置索引。选择范围为 [0, config.n_positions - 1]

    什么是位置 ID?

  • past_key_values (~cache_utils.Cache, 可选) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在解码上一阶段返回的 past_key_values,当 use_cache=Trueconfig.use_cache=True 时。

    允许两种格式:

    • Cache 实例,详见我们的 kv cache 指南
    • 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含两个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量)。这也被称为传统缓存格式。

    模型将输出与输入相同的缓存格式。如果没有传入 past_key_values,将返回传统缓存格式。

    如果使用了 past_key_values,用户可以选择只输入形状为 (batch_size, 1) 的最后一个 input_ids(那些没有将其过去的键值状态提供给此模型的),而不是所有形状为 (batch_size, sequence_length)input_ids

  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,你可以直接传入嵌入表示,而不是传入 input_ids。如果你想对如何将 input_ids 索引转换为关联向量有更多的控制,而不是使用模型内部的嵌入查找矩阵,这将非常有用。
  • labels (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于计算掩码语言建模损失的标签。索引应在 [0, ..., config.vocab_size] 或 -100 之间(参见 input_ids 文档字符串)。索引设置为 -100 的 token 将被忽略(掩码),损失仅针对标签在 [0, ..., config.vocab_size] 中的 token 计算。
  • use_cache (bool, 可选) — 如果设置为 True,将返回 past_key_values 键值状态,可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。更多详情请参阅返回张量中的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。更多详情请参阅返回张量中的 hidden_states
  • cache_position (torch.LongTensor,形状为 (sequence_length)可选) — 序列中输入序列 token 位置的索引。与 position_ids 不同,此张量不受填充影响。它用于在正确位置更新缓存并推断完整的序列长度。
  • logits_to_keep (Union[int, torch.Tensor], 默认为 0) — 如果是 int 类型,则计算最后 logits_to_keep 个 token 的 logits。如果为 0,则计算所有 input_ids 的 logits(特殊情况)。生成时只需要最后一个 token 的 logits,只计算该 token 的 logits 可以节省内存,这对于长序列或大词汇量来说非常重要。如果是 torch.Tensor 类型,则必须是一维的,对应于要在序列长度维度中保留的索引。这在使用打包张量格式(批量和序列长度的单个维度)时很有用。

返回

transformers.modeling_outputs.CausalLMOutputWithPasttuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithPasttorch.FloatTensor 的元组(如果传入 return_dict=False 或当 config.return_dict=False 时),根据配置(SmolLM3Config)和输入包含各种元素。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 labels 时返回) — 语言建模损失(用于下一个 token 预测)。

  • logits (形状为 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor) — 语言建模头部的预测分数(SoftMax 之前的每个词汇标记的分数)。

  • past_key_values (Cache, 可选, 当传入 use_cache=True 或当 config.use_cache=True 时返回) — 这是一个 Cache 实例。更多详情请参阅我们的 kv cache 指南

    包含预计算的隐藏状态(自注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传入 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 每个层的输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传入 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

SmolLM3ForCausalLM 的前向方法,覆盖了 __call__ 特殊方法。

尽管前向传播的实现需要在该函数中定义,但之后应该调用 Module 实例,而不是直接调用此函数,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, SmolLM3ForCausalLM

>>> model = SmolLM3ForCausalLM.from_pretrained("meta-smollm3/SmolLM3-2-7b-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("meta-smollm3/SmolLM3-2-7b-hf")

>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")

>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."

SmolLM3ForSequenceClassification

class transformers.SmolLM3ForSequenceClassification

< >

( config )

参数

SmolLM3 模型 Transformer,顶部带有一个序列分类头(线性层)。

SmolLM3ForSequenceClassification 使用最后一个 token 进行分类,与其他因果模型(如 GPT-2)相同。

由于它对最后一个 token 进行分类,因此需要知道最后一个 token 的位置。如果配置中定义了 pad_token_id,它会在每一行中找到不是填充 token 的最后一个 token。如果没有定义 pad_token_id,它会简单地取批处理中每一行的最后一个值。由于在传入 inputs_embeds 而不是 input_ids 时无法猜测填充 token,它会执行相同的操作(取批处理中每一行的最后一个值)。

此模型继承自 PreTrainedModel。请查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。

此模型也是 PyTorch torch.nn.Module 的子类。将其作为常规 PyTorch 模块使用,并参考 PyTorch 文档中与通用用法和行为相关的所有事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None ) transformers.modeling_outputs.SequenceClassifierOutputWithPasttuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列 token 的索引。默认情况下会忽略填充。

    可以使用 AutoTokenizer 获取索引。有关详情,请参见 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免在填充 token 索引上执行注意力的掩码。掩码值选择在 [0, 1] 之间:

    • 1 表示未被掩盖的 token,
    • 0 表示被掩盖的 token。

    什么是注意力掩码?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列 token 在位置嵌入中的位置索引。选择范围为 [0, config.n_positions - 1]

    什么是位置 ID?

  • past_key_values (~cache_utils.Cache, 可选) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在解码上一阶段返回的 past_key_values,当 use_cache=Trueconfig.use_cache=True 时。

    允许两种格式:

    • Cache 实例,详见我们的 kv cache 指南
    • 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含两个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量)。这也被称为传统缓存格式。

    模型将输出与输入相同的缓存格式。如果没有传入 past_key_values,将返回传统缓存格式。

    如果使用了 past_key_values,用户可以选择只输入形状为 (batch_size, 1) 的最后一个 input_ids(那些没有将其过去的键值状态提供给此模型的),而不是所有形状为 (batch_size, sequence_length)input_ids

  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,你可以直接传入嵌入表示,而不是传入 input_ids。如果你想对如何将 input_ids 索引转换为关联向量有更多的控制,而不是使用模型内部的嵌入查找矩阵,这将非常有用。
  • labels (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 之间。如果 config.num_labels == 1,则计算回归损失(均方损失);如果 config.num_labels > 1,则计算分类损失(交叉熵损失)。
  • use_cache (bool, 可选) — 如果设置为 True,将返回 past_key_values 键值状态,可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。更多详情请参阅返回张量中的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。更多详情请参阅返回张量中的 hidden_states

返回

transformers.modeling_outputs.SequenceClassifierOutputWithPasttuple(torch.FloatTensor)

一个 transformers.modeling_outputs.SequenceClassifierOutputWithPasttorch.FloatTensor 的元组(如果传入 return_dict=False 或当 config.return_dict=False 时),根据配置(SmolLM3Config)和输入包含各种元素。

  • loss (形状为 (1,)torch.FloatTensor可选,当提供 labels 时返回) — 分类损失(如果 config.num_labels==1,则为回归损失)。

  • logits (形状为 (batch_size, config.num_labels)torch.FloatTensor) — 分类(如果 config.num_labels==1,则为回归)分数(SoftMax 之前)。

  • past_key_values (Cache, 可选, 当传入 use_cache=True 或当 config.use_cache=True 时返回) — 这是一个 Cache 实例。更多详情请参阅我们的 kv cache 指南

    包含预计算的隐藏状态(自注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传入 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 每个层的输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传入 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

SmolLM3ForSequenceClassification 的前向方法,覆盖了 __call__ 特殊方法。

尽管前向传播的实现需要在该函数中定义,但之后应该调用 Module 实例,而不是直接调用此函数,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

单标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, SmolLM3ForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM3-3B")
>>> model = SmolLM3ForSequenceClassification.from_pretrained("HuggingFaceTB/SmolLM3-3B")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
...

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = SmolLM3ForSequenceClassification.from_pretrained("HuggingFaceTB/SmolLM3-3B", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...

多标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, SmolLM3ForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM3-3B")
>>> model = SmolLM3ForSequenceClassification.from_pretrained("HuggingFaceTB/SmolLM3-3B", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = SmolLM3ForSequenceClassification.from_pretrained(
...     "HuggingFaceTB/SmolLM3-3B", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

SmolLM3ForTokenClassification

class transformers.SmolLM3ForTokenClassification

< >

( config )

参数

  • config (SmolLM3ForTokenClassification) — 包含模型所有参数的模型配置类。使用配置文件初始化并不会加载与模型相关的权重,仅加载配置。请查看 from_pretrained() 方法来加载模型权重。

Smollm3 Transformer,顶部带有一个 token 分类头(在隐藏状态输出顶部的一个线性层),例如用于命名实体识别(NER)任务。

此模型继承自 PreTrainedModel。请查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。

此模型也是 PyTorch torch.nn.Module 的子类。将其作为常规 PyTorch 模块使用,并参考 PyTorch 文档中与通用用法和行为相关的所有事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None ) transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列 token 的索引。默认情况下会忽略填充。

    可以使用 AutoTokenizer 获取索引。有关详情,请参见 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免在填充 token 索引上执行注意力的掩码。掩码值选择在 [0, 1] 之间:

    • 1 表示未被掩盖的 token,
    • 0 表示被掩盖的 token。

    什么是注意力掩码?

  • position_ids (torch.LongTensor 形状为 (batch_size, sequence_length)可选) — 每个输入序列的词元在位置嵌入中的位置索引。选择范围为 [0, config.n_positions - 1]

    什么是位置ID?

  • past_key_values (~cache_utils.Cache可选) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在解码上一阶段返回的 past_key_values,当 use_cache=Trueconfig.use_cache=True 时。

    允许两种格式:

    • 一个 Cache 实例,请参阅我们的 kv cache 指南
    • 一个长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量)。这也被称为传统缓存格式。

    模型将输出与输入相同的缓存格式。如果没有传入 past_key_values,将返回传统缓存格式。

    如果使用 past_key_values,用户可以选择只输入形状为 (batch_size, 1) 的最后一个 input_ids(那些没有将其过去键值状态提供给此模型的输入),而不是形状为 (batch_size, sequence_length) 的所有 input_ids

  • inputs_embeds (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)可选) — 另外,除了传入 input_ids,你也可以选择直接传入嵌入表示。如果你想更精细地控制如何将 input_ids 索引转换为相关向量,而不是模型内部的嵌入查找矩阵,这会很有用。
  • labels (torch.LongTensor 形状为 (batch_size,)可选) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 范围内。如果 config.num_labels == 1,则计算回归损失(均方损失),如果 config.num_labels > 1,则计算分类损失(交叉熵)。
  • use_cache (bool, 可选) — 如果设置为 True,则返回 past_key_values 键值状态,可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。更多详情请参阅返回张量中的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。更多详情请参阅返回张量中的 hidden_states

返回

transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor 元组(如果传入 return_dict=Falseconfig.return_dict=False),包含根据配置(SmolLM3Config)和输入的不同元素。

  • loss (形状为 (1,)torch.FloatTensor可选,当提供 labels 时返回) — 分类损失。

  • logits (形状为 (batch_size, sequence_length, config.num_labels)torch.FloatTensor) — 分类分数(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传入 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 每个层的输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传入 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

SmolLM3ForTokenClassification 的 forward 方法,重写了 __call__ 特殊方法。

尽管前向传播的实现需要在该函数中定义,但之后应该调用 Module 实例,而不是直接调用此函数,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, SmolLM3ForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM3-3B")
>>> model = SmolLM3ForTokenClassification.from_pretrained("HuggingFaceTB/SmolLM3-3B")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
...

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...

SmolLM3ForQuestionAnswering

class transformers.SmolLM3ForQuestionAnswering

< >

( config )

参数

  • config (SmolLM3ForQuestionAnswering) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。请查看 from_pretrained() 方法来加载模型权重。

Smollm3 转换器,顶部带有一个 span 分类头,用于像 SQuAD 这样的抽取式问答任务(在隐藏状态输出之上有一个线性层来计算 span start logitsspan end logits)。

此模型继承自 PreTrainedModel。请查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。

此模型也是 PyTorch torch.nn.Module 的子类。将其作为常规 PyTorch 模块使用,并参考 PyTorch 文档中与通用用法和行为相关的所有事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None **kwargs ) transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor 形状为 (batch_size, sequence_length)可选) — 输入序列词元在词汇表中的索引。默认情况下将忽略填充。

    索引可以使用 AutoTokenizer 获取。详情请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.Tensor 形状为 (batch_size, sequence_length)可选) — 掩码,用于避免对填充词元索引执行注意力。掩码值选择范围为 [0, 1]

    • 1 表示未被掩码的词元,
    • 0 表示被掩码的词元。

    什么是注意力掩码?

  • position_ids (torch.LongTensor 形状为 (batch_size, sequence_length)可选) — 每个输入序列的词元在位置嵌入中的位置索引。选择范围为 [0, config.n_positions - 1]

    什么是位置ID?

  • past_key_values (~cache_utils.Cache可选) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在解码上一阶段返回的 past_key_values,当 use_cache=Trueconfig.use_cache=True 时。

    允许两种格式:

    • 一个 Cache 实例,请参阅我们的 kv cache 指南
    • 一个长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量)。这也被称为传统缓存格式。

    模型将输出与输入相同的缓存格式。如果没有传入 past_key_values,将返回传统缓存格式。

    如果使用 past_key_values,用户可以选择只输入形状为 (batch_size, 1) 的最后一个 input_ids(那些没有将其过去键值状态提供给此模型的输入),而不是形状为 (batch_size, sequence_length) 的所有 input_ids

  • inputs_embeds (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)可选) — 另外,除了传入 input_ids,你也可以选择直接传入嵌入表示。如果你想更精细地控制如何将 input_ids 索引转换为相关向量,而不是模型内部的嵌入查找矩阵,这会很有用。
  • start_positions (torch.LongTensor 形状为 (batch_size,)可选) — 用于计算词元分类损失的标记范围起始位置(索引)的标签。位置被限制在序列长度(sequence_length)内。序列外的位置不计入损失计算。
  • end_positions (torch.LongTensor 形状为 (batch_size,)可选) — 用于计算词元分类损失的标记范围结束位置(索引)的标签。位置被限制在序列长度(sequence_length)内。序列外的位置不计入损失计算。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。更多详情请参阅返回张量中的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。更多详情请参阅返回张量中的 hidden_states

返回

transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一个 torch.FloatTensor 元组(如果传入 return_dict=Falseconfig.return_dict=False),包含根据配置(SmolLM3Config)和输入的不同元素。

  • loss (torch.FloatTensor of shape (1,), 可选, 当提供 labels 时返回) — 总范围提取损失是起始位置和结束位置的交叉熵之和。

  • start_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — 范围起始分数(SoftMax 之前)。

  • end_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — 范围结束分数(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传入 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 每个层的输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传入 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

SmolLM3ForQuestionAnswering 的 forward 方法,重写了 __call__ 特殊方法。

尽管前向传播的实现需要在该函数中定义,但之后应该调用 Module 实例,而不是直接调用此函数,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, SmolLM3ForQuestionAnswering
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM3-3B")
>>> model = SmolLM3ForQuestionAnswering.from_pretrained("HuggingFaceTB/SmolLM3-3B")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
...

>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
...
< > 在 GitHub 上更新