TRL 文档
通用知识蒸馏训练器
并获得增强的文档体验
开始使用
通用知识蒸馏训练器
概述
通用知识蒸馏 (GKD) 在 语言模型的在线蒸馏:从自我生成的错误中学习 中被提出,作者为 Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos, Matthieu Geist, 和 Olivier Bachem。
该论文的摘要如下:
知识蒸馏 (KD) 被广泛用于压缩教师模型,以降低其推理成本和内存占用,通过训练一个更小的学生模型。然而,当前用于自回归序列模型的 KD 方法存在训练期间看到的输出序列与学生在推理期间生成的输出序列之间的分布不匹配问题。为了解决这个问题,我们引入了通用知识蒸馏 (GKD)。GKD 不是仅仅依赖于一组固定的输出序列,而是通过利用教师对这些序列的反馈,在学生自我生成的输出序列上训练学生。与监督 KD 方法不同,GKD 还提供了在学生和教师之间采用替代损失函数的灵活性,当学生缺乏模仿教师分布的表达能力时,这可能很有用。此外,GKD 促进了蒸馏与 RL 微调 (RLHF) 的无缝集成。我们证明了 GKD 在摘要、翻译和算术推理任务上蒸馏自回归语言模型以及用于指令调优的任务无关蒸馏的有效性。
GKD 的关键方面是:
- 它通过在学生模型自我生成的输出序列上训练学生模型,解决了自回归序列模型中训练-推理分布不匹配的问题。
- GKD 允许通过广义 Jensen-Shannon 散度 (JSD) 在学生模型和教师模型之间灵活选择不同的散度度量,当学生缺乏完全模仿教师的能力时,这可能很有用。
这种后训练方法由 Kashif Rasul 和 Lewis Tunstall 贡献。
使用技巧
GKDTrainer 是 SFTTrainer 类的包装器,它接受教师模型参数。它需要通过 GKDConfig 设置三个参数,即:
lmbda
:控制学生数据比例,即在线学生生成输出的比例。当lmbda=0.0
时,损失简化为监督 JSD,其中学生使用教师的 token 级别概率进行训练。当lmbda=1.0
时,损失简化为在线 JSD,其中学生生成输出序列,并从教师处获得关于这些序列的 token 特定反馈。对于 [0, 1] 之间的值,它根据每个批次的lmbda
值在两者之间随机选择。seq_kd
:控制是否执行序列级别 KD(可以看作是对教师生成输出的监督 FT)。当seq_kd=True
且lmbda=0.0
时,损失简化为监督 JSD,其中教师生成输出序列,学生从教师处获得关于这些序列的 token 特定反馈。beta
:控制广义 Jensen-Shannon 散度中的插值。当beta=0.0
时,损失近似于前向 KL 散度,而当beta=1.0
时,损失近似于反向 KL 散度。对于 [0, 1] 之间的值,它在两者之间进行插值。
作者发现在线数据(高 lmbda
)表现更好,最佳 beta
值因任务和评估方法而异。
基本 API 如下:
from datasets import Dataset
from trl import GKDConfig, GKDTrainer
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
)
NUM_DUMMY_SAMPLES = 100
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
# The model to optimise
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
# The teacher model to calculate the KL divergence against
teacher_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-1.5B-Instruct")
train_dataset = Dataset.from_dict(
{
"messages": [
[
{"role": "user", "content": "Hi, how are you?"},
{"role": "assistant", "content": "I'm great thanks"},
]
]
* NUM_DUMMY_SAMPLES
}
)
eval_dataset = Dataset.from_dict(
{
"messages": [
[
{"role": "user", "content": "What colour is the sky?"},
{"role": "assistant", "content": "The sky is blue"},
]
]
* NUM_DUMMY_SAMPLES
}
)
training_args = GKDConfig(output_dir="gkd-model", per_device_train_batch_size=1)
trainer = GKDTrainer(
model=model,
teacher_model=teacher_model,
args=training_args,
processing_class=tokenizer,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
)
trainer.train()
预期数据集类型
数据集应格式化为“messages”列表,其中每个消息都是字典列表,包含以下键:
role
:system
、assistant
或user
之一content
:消息内容
GKDTrainer
class trl.GKDTrainer
< source >( model: typing.Union[transformers.modeling_utils.PreTrainedModel, torch.nn.modules.module.Module, str, NoneType] = None teacher_model: typing.Union[transformers.modeling_utils.PreTrainedModel, torch.nn.modules.module.Module, str] = None args: typing.Optional[trl.trainer.gkd_config.GKDConfig] = None data_collator: typing.Optional[transformers.data.data_collator.DataCollator] = None train_dataset: typing.Optional[datasets.arrow_dataset.Dataset] = None eval_dataset: typing.Union[datasets.arrow_dataset.Dataset, dict[str, datasets.arrow_dataset.Dataset], NoneType] = None processing_class: typing.Union[transformers.tokenization_utils_base.PreTrainedTokenizerBase, transformers.image_processing_utils.BaseImageProcessor, transformers.feature_extraction_utils.FeatureExtractionMixin, transformers.processing_utils.ProcessorMixin, NoneType] = None compute_metrics: typing.Optional[typing.Callable[[transformers.trainer_utils.EvalPrediction], dict]] = None callbacks: typing.Optional[list[transformers.trainer_callback.TrainerCallback]] = None optimizers: tuple = (None, None) preprocess_logits_for_metrics: typing.Optional[typing.Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None peft_config: typing.Optional[ForwardRef('PeftConfig')] = None formatting_func: typing.Optional[typing.Callable] = None )
generalized_jsd_loss
< source >( student_logits teacher_logits labels = None beta = 0.5 temperature = 1.0 reduction = 'batchmean' ) → loss
参数
- student_logits — 形状为 (batch_size, sequence_length, vocab_size) 的张量
- teacher_logits — 形状为 (batch_size, sequence_length, vocab_size) 的张量
- labels — 形状为 (batch_size, sequence_length) 的张量,其中填充 token 为 -100,在计算损失时忽略
- beta — 介于 0 和 1 之间的插值系数(默认值:0.5)
- temperature — Softmax 温度(默认值:1.0)
- reduction — 指定应用于输出的归约方式(默认值:‘batchmean’)
返回值
loss
包含广义 JSD 损失的标量张量
使用 F.kl_div 计算知识蒸馏的广义 Jensen-Shannon 散度损失。有关定义,请参见 https://huggingface.ac.cn/papers/2306.13649 中的公式 (1) 。
training_step
< source >( model: Module inputs: dict num_items_in_batch: typing.Optional[int] = None )
执行通用知识蒸馏 (GKD) 模型的训练步骤。
此方法实现了 GKD 论文中描述的在线学习方法。以 self.lmbda
的概率,它使用学生模型生成新的响应,这些响应随后用于训练,而不是原始输入。
GKDConfig
class trl.GKDConfig
< source >( output_dir: typing.Optional[str] = None overwrite_output_dir: bool = False do_train: bool = False do_eval: bool = False do_predict: bool = False eval_strategy: typing.Union[transformers.trainer_utils.IntervalStrategy, str] = 'no' prediction_loss_only: bool = False per_device_train_batch_size: int = 8 per_device_eval_batch_size: int = 8 per_gpu_train_batch_size: typing.Optional[int] = None per_gpu_eval_batch_size: typing.Optional[int] = None gradient_accumulation_steps: int = 1 eval_accumulation_steps: typing.Optional[int] = None eval_delay: typing.Optional[float] = 0 torch_empty_cache_steps: typing.Optional[int] = None learning_rate: float = 2e-05 weight_decay: float = 0.0 adam_beta1: float = 0.9 adam_beta2: float = 0.999 adam_epsilon: float = 1e-08 max_grad_norm: float = 1.0 num_train_epochs: float = 3.0 max_steps: int = -1 lr_scheduler_type: typing.Union[transformers.trainer_utils.SchedulerType, str] = 'linear' lr_scheduler_kwargs: typing.Union[dict, str, NoneType] = <factory> warmup_ratio: float = 0.0 warmup_steps: int = 0 log_level: typing.Optional[str] = 'passive' log_level_replica: typing.Optional[str] = 'warning' log_on_each_node: bool = True logging_dir: typing.Optional[str] = None logging_strategy: typing.Union[transformers.trainer_utils.IntervalStrategy, str] = 'steps' logging_first_step: bool = False logging_steps: float = 500 logging_nan_inf_filter: bool = True save_strategy: typing.Union[transformers.trainer_utils.SaveStrategy, str] = 'steps' save_steps: float = 500 save_total_limit: typing.Optional[int] = None save_safetensors: typing.Optional[bool] = True save_on_each_node: bool = False save_only_model: bool = False restore_callback_states_from_checkpoint: bool = False no_cuda: bool = False use_cpu: bool = False use_mps_device: bool = False seed: int = 42 data_seed: typing.Optional[int] = None jit_mode_eval: bool = False use_ipex: bool = False bf16: bool = False fp16: bool = False fp16_opt_level: str = 'O1' half_precision_backend: str = 'auto' bf16_full_eval: bool = False fp16_full_eval: bool = False tf32: typing.Optional[bool] = None local_rank: int = -1 ddp_backend: typing.Optional[str] = None tpu_num_cores: typing.Optional[int] = None tpu_metrics_debug: bool = False debug: typing.Union[str, list[transformers.debug_utils.DebugOption]] = '' dataloader_drop_last: bool = False eval_steps: typing.Optional[float] = None dataloader_num_workers: int = 0 dataloader_prefetch_factor: typing.Optional[int] = None past_index: int = -1 run_name: typing.Optional[str] = None disable_tqdm: typing.Optional[bool] = None remove_unused_columns: typing.Optional[bool] = True label_names: typing.Optional[list[str]] = None load_best_model_at_end: typing.Optional[bool] = False metric_for_best_model: typing.Optional[str] = None greater_is_better: typing.Optional[bool] = None ignore_data_skip: bool = False fsdp: typing.Union[list[transformers.trainer_utils.FSDPOption], str, NoneType] = '' fsdp_min_num_params: int = 0 fsdp_config: typing.Union[dict, str, NoneType] = None tp_size: typing.Optional[int] = 0 fsdp_transformer_layer_cls_to_wrap: typing.Optional[str] = None accelerator_config: typing.Union[dict, str, NoneType] = None deepspeed: typing.Union[dict, str, NoneType] = None label_smoothing_factor: float = 0.0 optim: typing.Union[transformers.training_args.OptimizerNames, str] = 'adamw_torch' optim_args: typing.Optional[str] = None adafactor: bool = False group_by_length: bool = False length_column_name: typing.Optional[str] = 'length' report_to: typing.Union[NoneType, str, list[str]] = None ddp_find_unused_parameters: typing.Optional[bool] = None ddp_bucket_cap_mb: typing.Optional[int] = None ddp_broadcast_buffers: typing.Optional[bool] = None dataloader_pin_memory: bool = True dataloader_persistent_workers: bool = False skip_memory_metrics: bool = True use_legacy_prediction_loop: bool = False push_to_hub: bool = False resume_from_checkpoint: typing.Optional[str] = None hub_model_id: typing.Optional[str] = None hub_strategy: typing.Union[transformers.trainer_utils.HubStrategy, str] = 'every_save' hub_token: typing.Optional[str] = None hub_private_repo: typing.Optional[bool] = None hub_always_push: bool = False gradient_checkpointing: bool = False gradient_checkpointing_kwargs: typing.Union[dict, str, NoneType] = None include_inputs_for_metrics: bool = False include_for_metrics: list = <factory> eval_do_concat_batches: bool = True fp16_backend: str = 'auto' push_to_hub_model_idpush_to_hub_organization: typing.Optional[str] = None push_to_hub_token: typing.Optional[str] = None mp_parameters: str = '' auto_find_batch_size: bool = False full_determinism: bool = False torchdynamo: typing.Optional[str] = None ray_scope: typing.Optional[str] = 'last' ddp_timeout: typing.Optional[int] = 1800 torch_compile: bool = False torch_compile_backend: typing.Optional[str] = None torch_compile_mode: typing.Optional[str] = None include_tokens_per_second: typing.Optional[bool] = False include_num_input_tokens_seen: typing.Optional[bool] = False neftune_noise_alpha: typing.Optional[float] = None optim_target_modules: typing.Union[NoneType, str, list[str]] = None batch_eval_metricseval_on_startuse_liger_kerneleval_use_gather_objectaverage_tokens_across_devicesmodel_init_kwargsdataset_text_fielddataset_kwargsdataset_num_procpad_tokenmax_lengthpackingpadding_freeeval_packingdataset_batch_sizenum_of_sequenceschars_per_tokenmax_seq_lengthuse_ligertemperaturelmbdabetamax_new_tokensteacher_model_name_or_pathteacher_model_init_kwargsdisable_dropoutseq_kd)
参数
- temperature (
float
, optional, defaults to0.9
) — 采样温度。温度越高,补全内容就越随机。 - lmbda (
float
, optional, defaults to0.5
) — Lambda 参数,用于控制学生数据比例(即,策略内学生生成的输出的比例)。 - beta (
float
, optional, defaults to0.5
) — 广义 Jensen-Shannon 散度损失在0.0
和1.0
之间的插值系数。当 beta 为0.0
时,损失为 KL 散度。当 beta 为1.0
时,损失为逆 KL 散度。 - max_new_tokens (
int
, optional, defaults to128
) — 每次补全生成的最大 token 数。 - teacher_model_name_or_path (
str
orNone
, optional, defaults toNone
) — 教师模型的模型名称或路径。如果为None
,则教师模型将与正在训练的模型相同。 - teacher_model_init_kwargs (
dict[str, Any]]
orNone
, optional, defaults toNone
) — 从字符串实例化教师模型时,传递给AutoModelForCausalLM.from_pretrained
的关键字参数。 - disable_dropout (
bool
, optional, defaults toTrue
) — 是否禁用模型中的 dropout。 - seq_kd (
bool
, optional, defaults toFalse
) — Seq_kd 参数,用于控制是否执行序列级 KD(可以看作是对教师生成的输出进行监督式微调)。
用于 GKDTrainer 的配置类。