TRL 文档
RLOO 训练器
并获得增强的文档体验
开始使用
RLOO 训练器
TRL 支持使用 REINFORCE 留一法(RLOO)来训练大语言模型(LLM)。其核心思想是,RLOO 不使用价值函数,而是为每个提示词生成 K 个补全。对于每个补全,RLOO 使用其他 K-1 个补全的平均得分作为基线来计算优势。RLOO 还将整个补全建模为单个动作,而 PPO 则将每个词元(token)建模为一个动作。请注意,REINFORCE / A2C 是 PPO 的一个特例,即 PPO 周期数为 1 且小批量(mini-batch)数为 1 的情况,这就是我们在 TRL 中实现 RLOO 的方式。
参考文献
- 回归基础:在 LLM 中重新审视用于从人类反馈中学习的 REINFORCE 式优化
- A2C 是 PPO 的一个特例
- 从人类偏好中微调语言模型
- 从人类反馈中学习摘要
- PPO 算法在 RLHF 中的 N 个实现细节
- 使用 PPO 进行 RLHF 的 N+ 个实现细节:TL;DR 摘要案例研究
开始使用
要运行一个 RLOO 脚本以确保训练器可以正常工作,你可以运行以下命令,使用一个虚拟的奖励模型来训练 RLOO 模型。
python examples/scripts/rloo/rloo.py \ --dataset_name trl-internal-testing/descriptiveness-sentiment-trl-style \ --dataset_train_split descriptiveness \ --learning_rate 3e-6 \ --output_dir models/minimal/rloo \ --per_device_train_batch_size 64 \ --gradient_accumulation_steps 1 \ --total_episodes 10000 \ --model_name_or_path EleutherAI/pythia-14m \ --reward_model_path EleutherAI/pythia-14m \ --missing_eos_penalty 1.0
日志指标解释
记录的指标如下。这是一个在 Weights and Biases 上 跟踪的运行示例
eps
: 跟踪每秒的片段(episode)数。objective/kl
: 当前策略和参考策略之间的平均库尔贝克-莱布勒(KL)散度。objective/entropy
: 策略的平均熵,表示策略选择动作的随机性。objective/non_score_reward
: 来自非分数相关来源的平均奖励,基本上是beta * kl.sum(1)
,其中beta
是 KL 惩罚系数,kl
是每个词元的 KL 散度。objective/rlhf_reward
: 平均 RLHF 奖励,即score - non_score_reward
。objective/scores
: 由奖励模型/环境返回的平均分数。policy/approxkl_avg
: 连续 PPO 策略之间的平均近似 KL 散度。请注意,这与objective/kl
不同。policy/clipfrac_avg
: 被裁剪的策略更新的平均比例,表示策略更新被限制以防止大幅度变化的频率。loss/policy_avg
: 平均策略损失,表示策略的表现如何。val/clipfrac_avg
: 被裁剪的价值函数更新的平均比例,类似于 policy/clipfrac_avg,但用于价值函数。policy/entropy_avg
: 训练期间策略的平均熵,表示策略动作的多样性。val/ratio
: 当前策略概率与旧策略概率的平均比率,提供了策略变化程度的度量。val/ratio_var
:val/ratio
的方差,表示策略变化的可变性。val/num_eos_tokens
: 生成的序列结束(EOS)词元的数量,可以表示完整响应的数量。lr
: lr: 优化器当前使用的学习率。episode
: episode: 训练过程中的当前全局步骤或片段计数。
秘籍
- 调试提示:
objective/rlhf_reward
:这是 RLHF 训练的最终目标。如果训练按预期进行,该指标应持续上升。 - 调试提示:
val/ratio
:这个数值应该在 1.0 附近浮动,并且会被 PPO 的替代损失函数的--cliprange 0.2
参数裁剪。因此,如果这个ratio
过高(如 2.0 或 1000.0)或过低(如 0.1),则意味着连续策略之间的更新过于剧烈。你应该尝试理解为什么会发生这种情况并尝试修复它。 - 内存提示:如果内存不足,可以尝试减少
--per_device_train_batch_size
或增加--gradient_accumulation_steps
来减少内存占用。 - 内存提示:如果你有多个 GPU,也可以使用 DeepSpeed stage 3 运行训练以减少内存占用
accelerate launch --config_file examples/accelerate_configs/deepspeed_zero3.yaml
。 - 使用提示:我们建议通过
--missing_eos_penalty
使用“EOS 技巧”,它会从未以 EOS 词元结束的补全分数中减去一个固定的标量惩罚。这可以帮助模型学习生成更连贯的补全。
我的模型到底在做什么?
为了帮助您了解模型的行为,我们会定期记录一些模型的样本补全。这是一个补全的示例。在一个 在 Weights and Biases 上跟踪的运行示例中,它看起来如下,让您可以看到模型在不同训练阶段的响应。默认情况下,我们在训练期间生成 --num_sample_generations 10
个样本,但您可以自定义生成的数量。
在日志中,采样的生成结果如下所示:
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┓
┃ query ┃ model response ┃ score ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━┩
│ SUBREDDIT: r/AskReddit │ I'm in love with a friend, and │ 3.921875 │
│ │ I don't know how to get rid of │ │
│ TITLE: How do you get someone │ those feelings. I'm │ │
│ out of your head? │ desperate.<|endoftext|>[PAD][P… │ │
│ │ │ │
│ POST: Hi, │ │ │
│ I'm 22, and I have been with my │ │ │
│ girlfriend for 5 years now. We │ │ │
│ recently moved together. We've │ │ │
│ always loved each other │ │ │
│ intensely. │ │ │
│ │ │ │
│ Problem, I recently started to │ │ │
│ have feelings for an other │ │ │
│ person (a friend). This person │ │ │
│ has had a boyfriend for now 3 │ │ │
│ years, and has absolutely no │ │ │
│ ideas. Those feelings were so │ │ │
│ strong, it was hard to hide │ │ │
│ them. After 2 months of me │ │ │
│ being distant and really sad, │ │ │
│ my girlfriend forced me to say │ │ │
│ what was bothering me. I'm not │ │ │
│ a good liar, and now she knows. │ │ │
│ │ │ │
│ We decided to give us a week │ │ │
│ alone, I went to my parents. │ │ │
│ │ │ │
│ Now, I'm completely lost. I │ │ │
│ keep on thinking about this │ │ │
│ person, and I hate that. I │ │ │
│ would like for those feelings │ │ │
│ to go away, to leave me alone. │ │ │
│ But I can't. │ │ │
│ │ │ │
│ What do I do? It's been 3 │ │ │
│ months now, and I'm just │ │ │
│ desperate. │ │ │
│ │ │ │
│ TL;DR: │ │ │
├─────────────────────────────────┼─────────────────────────────────┼──────────┤
│ SUBREDDIT: r/pettyrevenge │ My mom woke me up with a loud │ 6.84375 │
│ │ TV. I blasted Gangnam Style on │ │
│ TITLE: So, my mom woke me up │ repeat, with the bass cranked │ │
│ with a loud TV. │ up as high as it could │ │
│ │ go.<|endoftext|>[PAD][PAD][PAD… │ │
│ POST: She was in her living │ │ │
│ room, watching TV. This was at │ │ │
│ about 8:30 in the morning, and │ │ │
│ she was exercising. She turned │ │ │
│ the TV up extra loud to hear it │ │ │
│ over her excercycle, and woke │ │ │
│ me up. I went in there asking │ │ │
│ for her to turn it down. She │ │ │
│ said she didn't have to; I │ │ │
│ explained that I always used │ │ │
│ headphones so she didn't have │ │ │
│ to deal with my noise and that │ │ │
│ she should give me a little │ │ │
│ more respect, given that I paid │ │ │
│ rent at the time. │ │ │
│ │ │ │
│ She disagreed. I went back to │ │ │
│ my room, rather pissed off at │ │ │
│ the lack of equality. I had no │ │ │
│ lock on my door; but I had a │ │ │
│ dresser right next to it, so I │ │ │
│ pulled one of the drawers out │ │ │
│ enough so that it caused the │ │ │
│ door to not be openable. Then, │ │ │
│ I turned my speakers up really │ │ │
│ loud and blasted Gangnam Style │ │ │
│ on repeat, with the bass │ │ │
│ cranked up as high as it could │ │ │
│ go. │ │ │
│ │ │ │
│ If you hate Gangnam Style for │ │ │
│ being overplayed, you will see │ │ │
│ why I chose that particular │ │ │
│ song. I personally don't mind │ │ │
│ it. But here's the thing about │ │ │
│ my bass; it vibrates the walls, │ │ │
│ making one hell of a lot of │ │ │
│ noise. Needless to say, my mom │ │ │
│ was not pleased and shut off │ │ │
│ the internet. But it was oh so │ │ │
│ worth it. │ │ │
│ │ │ │
│ TL;DR: │ │ │
└─────────────────────────────────┴─────────────────────────────────┴──────────┘
实现细节
RLOOTrainer 的大部分内容基于 PPO 实现,而该实现又基于论文 使用 PPO 进行 RLHF 的 N+ 个实现细节:TL;DR 摘要案例研究。
以下是 RLOO 的向量化优势计算方法
def test_rloo_reward():
local_batch_size = 3
rloo_k = 4
rlhf_reward = torch.tensor([
1, 2, 3, # first rlhf reward for three prompts
2, 3, 4, # second rlhf reward for three prompts
5, 6, 7, # third rlhf reward for three prompts
8, 9, 10, # fourth rlhf reward for three prompts
]).float() # here we have 3 prompts which have 4 completions each
baseline = (rlhf_reward.sum(0) - rlhf_reward) / (rloo_k - 1)
advantages = torch.zeros_like(rlhf_reward)
for i in range(0, len(advantages), local_batch_size):
other_response_rlhf_rewards = []
for j in range(0, len(advantages), local_batch_size):
if i != j:
other_response_rlhf_rewards.append(rlhf_reward[j : j + local_batch_size])
advantages[i : i + local_batch_size] = rlhf_reward[i : i + local_batch_size] - torch.stack(other_response_rlhf_rewards).mean(0)
assert (1 - (2 + 5 + 8) / 3 - advantages[0].item()) < 1e-6 # First rlhf reward for the first prompt
assert (6 - (3 + 2 + 9) / 3 - advantages[7].item()) < 1e-6 # Third rlhf reward for the second prompt
# Vectorized implementation
rlhf_reward = rlhf_reward.reshape(rloo_k, local_batch_size)
baseline = (rlhf_reward.sum(0) - rlhf_reward) / (rloo_k - 1)
vec_advantages = rlhf_reward - baseline
torch.testing.assert_close(vec_advantages.flatten(), advantages)
基准实验
为了验证 RLOO 实现的有效性,我们对 1B 参数模型进行了实验。以下是我们用来运行实验的命令。我们直接使用了论文 使用 PPO 进行 RLHF 的 N+ 个实现细节:TL;DR 摘要案例研究 中的 SFT / RM 模型。
accelerate launch --config_file examples/accelerate_configs/deepspeed_zero2.yaml \
--output_dir models/minimal/rloo_tldr \
--dataset_name trl-internal-testing/tldr-preference-sft-trl-style \
--dataset_test_split validation \
--num_ppo_epochs 2 \
--num_mini_batches 2 \
--learning_rate 3e-6 \
--per_device_train_batch_size 16 \
--gradient_accumulation_steps 16 \
--total_episodes 1000000 \
--model_name_or_path EleutherAI/pythia-1b-deduped \
--sft_model_path cleanrl/EleutherAI_pythia-1b-deduped__sft__tldr \
--reward_model_path cleanrl/EleutherAI_pythia-1b-deduped__reward__tldr \
--local_rollout_forward_batch_size 16 \
--missing_eos_penalty 1.0 \
--stop_token eos \
--kl_coef 0.03
检查点和实验跟踪可在以下链接查看:
为了进行评估,我们使用 vLLM 加载检查点,并使用 GPT-4o mini 作为评判模型来评估生成的 TL;DR 与参考 TL;DR 的优劣。有关如何使用评判模型的更多信息,请参见 评判模型。
$ python examples/scripts/evals/judge_tldr.py --model_name_or_path cleanrl/EleutherAI_pythia-1b-deduped__sft__tldr --judge_model gpt-4o-mini --num_examples 1000 Model win rate: 33.00% $ python examples/scripts/evals/judge_tldr.py --model_name_or_path vwxyzjn/rloo_tldr --judge_model gpt-4o-mini --num_examples 1000 Model win rate: 51.20%
RLOO 检查点获得了 51.2% 的偏好率,而 SFT 检查点的偏好率为 33.0%。这是一个很好的迹象,表明 RLOO 训练按预期工作。
指标
# pip install openrlbenchmark==0.2.1a5
# see https://github.com/openrlbenchmark/openrlbenchmark#get-started for documentation
# to use it, change `?we=huggingface&wpn=trl` to your own project and `?tag=pr-1540` to your own tag
python -m openrlbenchmark.rlops_multi_metrics \
--filters '?we=huggingface&wpn=trl&xaxis=train/episode&ceik=output_dir&cen=sft_model_path&metrics=train/objective/rlhf_reward&metrics=train/objective/scores&metrics=train/objective/kl&metrics=train/objective/non_score_reward&metrics=train/objective/entropy&metrics=train/policy/approxkl_avg&metrics=train/policy/clipfrac_avg&metrics=train/loss/policy_avg&metrics=train/policy/entropy_avg&metrics=train/val/ratio&metrics=train/val/ratio_var&metrics=train/val/num_eos_tokens&metrics=train/lr&metrics=train/eps' \
"cleanrl/EleutherAI_pythia-1b-deduped__sft__tldr?tag=pr-1540" \
--env-ids models/minimal/rloo_tldr \
--pc.ncols 4 \
--pc.ncols-legend 1 \
--pc.xlabel "Episode" \
--output-filename benchmark/trl/pr-1540/rloo \
--scan-history
Reinforce++
Jian Hu 的 Reinforce++ 报告提出了一些优化技巧,以提高 RLHF 的性能和稳定性。这些技巧包括:
- 裁剪奖励:将奖励值限制在特定范围内,以减轻极端奖励对模型更新的影响,从而防止梯度爆炸。
- 归一化奖励:将奖励缩放至均值为 0、标准差为 1,这有助于稳定训练过程。
- 归一化优势:将优势缩放至均值为 0、标准差为 1,这有助于稳定训练过程。
- 使用报告中公式 (1) 定义的词元级 KL 惩罚,而非序列级 KL 惩罚(默认)。
这些选项可通过 RLOOConfig 类中的相应参数进行设置。
RLOOTrainer
class trl.RLOOTrainer
< 源码 >( config: RLOOConfig processing_class: typing.Union[transformers.tokenization_utils_base.PreTrainedTokenizerBase, transformers.image_processing_utils.BaseImageProcessor, transformers.feature_extraction_utils.FeatureExtractionMixin, transformers.processing_utils.ProcessorMixin, NoneType] policy: Module ref_policy: Module reward_model: typing.Union[torch.nn.modules.module.Module, typing.Callable[[list[str]], list[float]]] train_dataset: Dataset data_collator: typing.Optional[transformers.data.data_collator.DataCollatorWithPadding] = None eval_dataset: typing.Union[datasets.arrow_dataset.Dataset, dict[str, datasets.arrow_dataset.Dataset], NoneType] = None optimizers: tuple = (None, None) callbacks: typing.Optional[list[transformers.trainer_callback.TrainerCallback]] = None )
将保存模型,以便您可以使用 `from_pretrained()` 重新加载它。
仅从主进程保存。
push_to_hub
< 源码 >( commit_message: typing.Optional[str] = 'End of training' blocking: bool = True token: typing.Optional[str] = None revision: typing.Optional[str] = None **kwargs )
参数
- commit_message (
str
, 可选, 默认为"End of training"
) — 推送时使用的提交信息。 - blocking (
bool
, 可选, 默认为True
) — 函数是否应在 `git push` 完成后才返回。 - token (
str
, 可选, 默认为None
) — 具有写入权限的令牌,用于覆盖 Trainer 的原始参数。 - revision (
str
, 可选) — 要提交的 git 修订版本。默认为“main”分支的头部。 - kwargs (
dict[str, Any]
, 可选) — 传递给 `~Trainer.create_model_card` 的额外关键字参数。
将 `self.model` 和 `self.processing_class` 上传到 🤗 模型中心的 `self.args.hub_model_id` 存储库。
RLOOConfig
class trl.RLOOConfig
< 源码 >( output_dir: typing.Optional[str] = None overwrite_output_dir: bool = False do_train: bool = False do_eval: bool = False do_predict: bool = False eval_strategy: typing.Union[transformers.trainer_utils.IntervalStrategy, str] = 'no' prediction_loss_only: bool = False per_device_train_batch_size: int = 8 per_device_eval_batch_size: int = 8 per_gpu_train_batch_size: typing.Optional[int] = None per_gpu_eval_batch_size: typing.Optional[int] = None gradient_accumulation_steps: int = 1 eval_accumulation_steps: typing.Optional[int] = None eval_delay: typing.Optional[float] = 0 torch_empty_cache_steps: typing.Optional[int] = None learning_rate: float = 5e-05 weight_decay: float = 0.0 adam_beta1: float = 0.9 adam_beta2: float = 0.999 adam_epsilon: float = 1e-08 max_grad_norm: float = 1.0 num_train_epochs: float = 3.0 max_steps: int = -1 lr_scheduler_type: typing.Union[transformers.trainer_utils.SchedulerType, str] = 'linear' lr_scheduler_kwargs: typing.Union[dict[str, typing.Any], str, NoneType] = <factory> warmup_ratio: float = 0.0 warmup_steps: int = 0 log_level: str = 'passive' log_level_replica: str = 'warning' log_on_each_node: bool = True logging_dir: typing.Optional[str] = None logging_strategy: typing.Union[transformers.trainer_utils.IntervalStrategy, str] = 'steps' logging_first_step: bool = False logging_steps: float = 10 logging_nan_inf_filter: bool = True save_strategy: typing.Union[transformers.trainer_utils.SaveStrategy, str] = 'steps' save_steps: float = 500 save_total_limit: typing.Optional[int] = None save_safetensors: typing.Optional[bool] = True save_on_each_node: bool = False save_only_model: bool = False restore_callback_states_from_checkpoint: bool = False no_cuda: bool = False use_cpu: bool = False use_mps_device: bool = False seed: int = 42 data_seed: typing.Optional[int] = None jit_mode_eval: bool = False use_ipex: bool = False bf16: typing.Optional[bool] = None fp16: bool = False fp16_opt_level: str = 'O1' half_precision_backend: str = 'auto' bf16_full_eval: bool = False fp16_full_eval: bool = False tf32: typing.Optional[bool] = None local_rank: int = -1 ddp_backend: typing.Optional[str] = None tpu_num_cores: typing.Optional[int] = None tpu_metrics_debug: bool = False debug: typing.Union[str, list[transformers.debug_utils.DebugOption]] = '' dataloader_drop_last: bool = False eval_steps: typing.Optional[float] = None dataloader_num_workers: int = 0 dataloader_prefetch_factor: typing.Optional[int] = None past_index: int = -1 run_name: typing.Optional[str] = None disable_tqdm: typing.Optional[bool] = None remove_unused_columns: typing.Optional[bool] = True label_names: typing.Optional[list[str]] = None load_best_model_at_end: typing.Optional[bool] = False metric_for_best_model: typing.Optional[str] = None greater_is_better: typing.Optional[bool] = None ignore_data_skip: bool = False fsdp: typing.Union[list[transformers.trainer_utils.FSDPOption], str, NoneType] = '' fsdp_min_num_params: int = 0 fsdp_config: typing.Union[dict[str, typing.Any], str, NoneType] = None fsdp_transformer_layer_cls_to_wrap: typing.Optional[str] = None accelerator_config: typing.Union[dict, str, NoneType] = None deepspeed: typing.Union[dict, str, NoneType] = None label_smoothing_factor: float = 0.0 optim: typing.Union[transformers.training_args.OptimizerNames, str] = 'adamw_torch' optim_args: typing.Optional[str] = None adafactor: bool = False group_by_length: bool = False length_column_name: typing.Optional[str] = 'length' report_to: typing.Union[NoneType, str, list[str]] = None ddp_find_unused_parameters: typing.Optional[bool] = None ddp_bucket_cap_mb: typing.Optional[int] = None ddp_broadcast_buffers: typing.Optional[bool] = None dataloader_pin_memory: bool = True dataloader_persistent_workers: bool = False skip_memory_metrics: bool = True use_legacy_prediction_loop: bool = False push_to_hub: bool = False resume_from_checkpoint: typing.Optional[str] = None hub_model_id: typing.Optional[str] = None hub_strategy: typing.Union[transformers.trainer_utils.HubStrategy, str] = 'every_save' hub_token: typing.Optional[str] = None hub_private_repo: typing.Optional[bool] = None hub_always_push: bool = False hub_revision: typing.Optional[str] = None gradient_checkpointing: bool = False gradient_checkpointing_kwargs: typing.Union[dict[str, typing.Any], str, NoneType] = None include_inputs_for_metrics: bool = False include_for_metrics: list = <factory> eval_do_concat_batches: bool = True fp16_backend: str = 'auto' push_to_hub_model_id: typing.Optional[str] = None push_to_hub_organization: typing.Optional[str] = None push_to_hub_token: typing.Optional[str] = None mp_parameters: str = '' auto_find_batch_size: bool = False full_determinism: bool = False torchdynamo: typing.Optional[str] = None ray_scope: typing.Optional[str] = 'last' ddp_timeout: int = 1800 torch_compile: bool = False torch_compile_backend: typing.Optional[str] = None torch_compile_mode: typing.Optional[str] = None include_tokens_per_second: typing.Optional[bool] = False include_num_input_tokens_seen: typing.Optional[bool] = False neftune_noise_alpha: typing.Optional[float] = None optim_target_modules: typing.Union[NoneType, str, list[str]] = None batch_eval_metrics: bool = False eval_on_start: bool = False use_liger_kernel: typing.Optional[bool] = False liger_kernel_config: typing.Optional[dict[str, bool]] = None eval_use_gather_object: typing.Optional[bool] = False average_tokens_across_devices: typing.Optional[bool] = True dataset_num_proc: typing.Optional[int] = None num_mini_batches: int = 1 total_episodes: typing.Optional[int] = None local_rollout_forward_batch_size: int = 64 num_sample_generations: int = 10 response_length: int = 53 stop_token: typing.Optional[typing.Literal['eos']] = None stop_token_id: typing.Optional[int] = None temperature: float = 0.7 missing_eos_penalty: typing.Optional[float] = None sft_model_path: str = 'EleutherAI/pythia-160m' world_size: typing.Optional[int] = None num_total_batches: typing.Optional[int] = None micro_batch_size: typing.Optional[int] = None local_batch_size: typing.Optional[int] = None batch_size: typing.Optional[int] = None local_mini_batch_size: typing.Optional[int] = None mini_batch_size: typing.Optional[int] = None exp_name: str = 'rloo_config' reward_model_path: str = 'EleutherAI/pythia-160m' num_ppo_epochs: int = 4 whiten_rewards: bool = False kl_coef: float = 0.05 cliprange: float = 0.2 rloo_k: int = 2 normalize_reward: bool = False reward_clip_range: float = 10.0 normalize_advantage: bool = False token_level_kl: bool = False ds3_gather_for_generation: bool = True )
参数
- exp_name (
str
, 可选, 默认为os.path.basename(__file__)[ -- -len(".py")]
): 本次实验的名称。 - reward_model_path (
str
, 可选, 默认为"EleutherAI/pythia-160m"
) — 奖励模型的路径。 - num_ppo_epochs (
int
, 可选, 默认为4
) — 训练的周期数。 - whiten_rewards (
bool
, 可选, 默认为False
) — 是否白化奖励。 - kl_coef (
float
, 可选, 默认为0.05
) — KL 系数。 - cliprange (
float
, 可选, 默认为0.2
) — 裁剪范围。 - rloo_k (
int
, 可选, 默认为2
) — REINFORCE 留一法 (RLOO) 中每个提示词的在线样本数。 - normalize_reward (
bool
, optional, defaults toFalse
) — 是否对奖励进行归一化。 - reward_clip_range (
float
, optional, defaults to10.0
) — 奖励的裁剪范围。 - normalize_advantage (
bool
, optional, defaults toFalse
) — 是否对优势函数(advantages)进行归一化。 - token_level_kl (
bool
, optional, defaults toTrue
) — 是使用词元级别(token-level)的 KL 惩罚还是序列级别(sequence-level)的 KL 惩罚。 - ds3_gather_for_generation (
bool
, optional, defaults toTrue
) — 此设置适用于 DeepSpeed ZeRO-3。如果启用,策略模型的权重将在生成时被收集,从而提高生成速度。然而,禁用此选项可以训练超过单个 GPU VRAM 容量的模型,但代价是生成速度会变慢。
RLOOTrainer 的配置类。
此类仅包含特定于 RLOO 训练的参数。有关训练参数的完整列表,请参阅 TrainingArguments
和 OnPolicyConfig
文档。请注意,此类中的默认值可能与 TrainingArguments
中的默认值不同。
使用 HfArgumentParser
,我们可以将此类别转换为可在命令行上指定的 argparse 参数。