TRL 文档
RLOO 训练器
并获得增强的文档体验
开始使用
RLOO 训练器
TRL 支持使用 REINFORCE 留一法 (RLOO) 训练 LLM。其思想是,RLOO 不使用价值函数,而是为每个提示生成 K 个补全。对于每个补全,RLOO 使用其他 K-1 个补全的平均分数作为基线来计算优势。RLOO 还将整个补全建模为单个动作,而 PPO 将每个 token 建模为一个动作。请注意,REINFORCE / A2C 是 PPO 的一个特例,当 PPO epoch 数为 1 且 mini-batch 数为 1 时,这正是我们在 TRL 中实现 RLOO 的方式。
参考文献
- 回到基础:重新审视 REINFORCE 风格的优化,用于从 LLM 的人类反馈中学习
- A2C 是 PPO 的一个特例
- 从人类偏好微调语言模型
- 从人类反馈中学习总结
- 使用 PPO 的 RLHF 的 N 个实现细节
- 使用 PPO 的 RLHF 的 N+ 个实现细节:关于 TL;DR 摘要的案例研究
开始使用
要运行 RLOO 脚本以确保训练器可以运行,您可以运行以下命令来训练带有虚拟奖励模型的 RLOO 模型。
python examples/scripts/rloo/rloo.py \ --dataset_name trl-internal-testing/descriptiveness-sentiment-trl-style \ --dataset_train_split descriptiveness \ --learning_rate 3e-6 \ --output_dir models/minimal/rloo \ --per_device_train_batch_size 64 \ --gradient_accumulation_steps 1 \ --total_episodes 10000 \ --model_name_or_path EleutherAI/pythia-14m \ --reward_model_path EleutherAI/pythia-14m \ --missing_eos_penalty 1.0
记录指标的解释
记录的指标如下。这是一个示例 在 Weights and Biases 跟踪的运行
eps
: 跟踪每秒的 episode 数。objective/kl
: 当前策略和参考策略之间的平均 Kullback-Leibler (KL) 散度。objective/entropy
: 策略的平均熵,指示策略选择的动作的随机性。objective/non_score_reward
: 来自非分数相关来源的平均奖励,基本上是beta * kl.sum(1)
,其中beta
是 KL 惩罚系数,kl
是每个 token 的 KL 散度。objective/rlhf_reward
: 平均 RLHF 奖励,即score - non_score_reward
。objective/scores
: 奖励模型/环境返回的平均分数。policy/approxkl_avg
: 连续 PPO 策略之间的平均近似 KL 散度。请注意,这与objective/kl
不同。policy/clipfrac_avg
: 策略更新的平均裁剪比例,指示策略更新被约束以防止大幅更改的频率。loss/policy_avg
: 平均策略损失,指示策略的性能。val/clipfrac_avg
: 价值函数更新的平均裁剪比例,类似于 policy/clipfrac_avg,但用于价值函数。policy/entropy_avg
: 训练期间策略的平均熵,指示策略动作的多样性。val/ratio
: 当前策略概率与旧策略概率的平均比率,提供策略更改程度的度量。val/ratio_var
:val/ratio
的方差,指示策略更改的可变性。val/num_eos_tokens
: 生成的序列结束 (EOS) token 的数量,这可以指示完整响应的数量。lr
: lr:优化器使用的当前学习率。episode
: episode:训练过程中的当前全局步骤或 episode 计数。
实用技巧
- 调试技巧:
objective/rlhf_reward
:这是 RLHF 训练的最终目标。如果训练按预期进行,则此指标应持续上升。 - 调试技巧:
val/ratio
:这个数字应该在 1.0 左右浮动,并且通过 PPO 代理损失的--cliprange 0.2
进行裁剪。因此,如果这个ratio
太高(如 2.0 或 1000.0)或太小(如 0.1),则意味着连续策略之间的更新过于剧烈。您应该尝试理解为什么会发生这种情况并尝试修复它。 - 内存技巧:如果您的内存不足,您可以尝试减少
--per_device_train_batch_size
或增加--gradient_accumulation_steps
以减少内存占用。 - 内存技巧:如果您有多个 GPU,您还可以使用 DeepSpeed stage 3 运行训练以减少内存占用
accelerate launch --config_file examples/accelerate_configs/deepspeed_zero3.yaml
。 - 使用技巧:我们建议通过
--missing_eos_penalty
使用“EOS 技巧”,这会从不以 EOS token 结尾的补全的分数中减去一个静态标量惩罚。这可以帮助模型学习生成更连贯的补全。
我的模型到底在做什么?
为了帮助您了解您的模型正在做什么,我们会定期记录模型的一些示例补全。这是一个补全的示例。在示例 在 Weights and Biases 跟踪的运行 中,它看起来像下面这样,让您可以在训练的不同阶段看到模型的响应。默认情况下,我们在训练期间生成 --num_sample_generations 10
,但您可以自定义生成数量。
在日志中,采样的生成结果如下所示
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┓
┃ query ┃ model response ┃ score ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━┩
│ SUBREDDIT: r/AskReddit │ I'm in love with a friend, and │ 3.921875 │
│ │ I don't know how to get rid of │ │
│ TITLE: How do you get someone │ those feelings. I'm │ │
│ out of your head? │ desperate.<|endoftext|>[PAD][P… │ │
│ │ │ │
│ POST: Hi, │ │ │
│ I'm 22, and I have been with my │ │ │
│ girlfriend for 5 years now. We │ │ │
│ recently moved together. We've │ │ │
│ always loved each other │ │ │
│ intensely. │ │ │
│ │ │ │
│ Problem, I recently started to │ │ │
│ have feelings for an other │ │ │
│ person (a friend). This person │ │ │
│ has had a boyfriend for now 3 │ │ │
│ years, and has absolutely no │ │ │
│ ideas. Those feelings were so │ │ │
│ strong, it was hard to hide │ │ │
│ them. After 2 months of me │ │ │
│ being distant and really sad, │ │ │
│ my girlfriend forced me to say │ │ │
│ what was bothering me. I'm not │ │ │
│ a good liar, and now she knows. │ │ │
│ │ │ │
│ We decided to give us a week │ │ │
│ alone, I went to my parents. │ │ │
│ │ │ │
│ Now, I'm completely lost. I │ │ │
│ keep on thinking about this │ │ │
│ person, and I hate that. I │ │ │
│ would like for those feelings │ │ │
│ to go away, to leave me alone. │ │ │
│ But I can't. │ │ │
│ │ │ │
│ What do I do? It's been 3 │ │ │
│ months now, and I'm just │ │ │
│ desperate. │ │ │
│ │ │ │
│ TL;DR: │ │ │
├─────────────────────────────────┼─────────────────────────────────┼──────────┤
│ SUBREDDIT: r/pettyrevenge │ My mom woke me up with a loud │ 6.84375 │
│ │ TV. I blasted Gangnam Style on │ │
│ TITLE: So, my mom woke me up │ repeat, with the bass cranked │ │
│ with a loud TV. │ up as high as it could │ │
│ │ go.<|endoftext|>[PAD][PAD][PAD… │ │
│ POST: She was in her living │ │ │
│ room, watching TV. This was at │ │ │
│ about 8:30 in the morning, and │ │ │
│ she was exercising. She turned │ │ │
│ the TV up extra loud to hear it │ │ │
│ over her excercycle, and woke │ │ │
│ me up. I went in there asking │ │ │
│ for her to turn it down. She │ │ │
│ said she didn't have to; I │ │ │
│ explained that I always used │ │ │
│ headphones so she didn't have │ │ │
│ to deal with my noise and that │ │ │
│ she should give me a little │ │ │
│ more respect, given that I paid │ │ │
│ rent at the time. │ │ │
│ │ │ │
│ She disagreed. I went back to │ │ │
│ my room, rather pissed off at │ │ │
│ the lack of equality. I had no │ │ │
│ lock on my door; but I had a │ │ │
│ dresser right next to it, so I │ │ │
│ pulled one of the drawers out │ │ │
│ enough so that it caused the │ │ │
│ door to not be openable. Then, │ │ │
│ I turned my speakers up really │ │ │
│ loud and blasted Gangnam Style │ │ │
│ on repeat, with the bass │ │ │
│ cranked up as high as it could │ │ │
│ go. │ │ │
│ │ │ │
│ If you hate Gangnam Style for │ │ │
│ being overplayed, you will see │ │ │
│ why I chose that particular │ │ │
│ song. I personally don't mind │ │ │
│ it. But here's the thing about │ │ │
│ my bass; it vibrates the walls, │ │ │
│ making one hell of a lot of │ │ │
│ noise. Needless to say, my mom │ │ │
│ was not pleased and shut off │ │ │
│ the internet. But it was oh so │ │ │
│ worth it. │ │ │
│ │ │ │
│ TL;DR: │ │ │
└─────────────────────────────────┴─────────────────────────────────┴──────────┘
实现细节
RLOOTrainer 的大部分基于 PPO 实现,该实现基于 使用 PPO 的 RLHF 的 N+ 个实现细节:关于 TL;DR 摘要的案例研究。
下面是 RLOO 的向量化优势计算
def test_rloo_reward():
local_batch_size = 3
rloo_k = 4
rlhf_reward = torch.tensor([
1, 2, 3, # first rlhf reward for three prompts
2, 3, 4, # second rlhf reward for three prompts
5, 6, 7, # third rlhf reward for three prompts
8, 9, 10, # fourth rlhf reward for three prompts
]).float() # here we have 3 prompts which have 4 completions each
baseline = (rlhf_reward.sum(0) - rlhf_reward) / (rloo_k - 1)
advantages = torch.zeros_like(rlhf_reward)
for i in range(0, len(advantages), local_batch_size):
other_response_rlhf_rewards = []
for j in range(0, len(advantages), local_batch_size):
if i != j:
other_response_rlhf_rewards.append(rlhf_reward[j : j + local_batch_size])
advantages[i : i + local_batch_size] = rlhf_reward[i : i + local_batch_size] - torch.stack(other_response_rlhf_rewards).mean(0)
assert (1 - (2 + 5 + 8) / 3 - advantages[0].item()) < 1e-6 # First rlhf reward for the first prompt
assert (6 - (3 + 2 + 9) / 3 - advantages[7].item()) < 1e-6 # Third rlhf reward for the second prompt
# Vectorized implementation
rlhf_reward = rlhf_reward.reshape(rloo_k, local_batch_size)
baseline = (rlhf_reward.sum(0) - rlhf_reward) / (rloo_k - 1)
vec_advantages = rlhf_reward - baseline
torch.testing.assert_close(vec_advantages.flatten(), advantages)
基准实验
为了验证 RLOO 实现是否有效,我们在 1B 模型上运行了实验。以下是我们用来运行实验的命令。我们直接从 使用 PPO 的 RLHF 的 N+ 个实现细节:关于 TL;DR 摘要的案例研究 中获取 SFT/RM 模型。
accelerate launch --config_file examples/accelerate_configs/deepspeed_zero2.yaml \
--output_dir models/minimal/rloo_tldr \
--dataset_name trl-internal-testing/tldr-preference-sft-trl-style \
--dataset_test_split validation \
--num_ppo_epochs 2 \
--num_mini_batches 2 \
--learning_rate 3e-6 \
--per_device_train_batch_size 16 \
--gradient_accumulation_steps 16 \
--total_episodes 1000000 \
--model_name_or_path EleutherAI/pythia-1b-deduped \
--sft_model_path cleanrl/EleutherAI_pythia-1b-deduped__sft__tldr \
--reward_model_path cleanrl/EleutherAI_pythia-1b-deduped__reward__tldr \
--local_rollout_forward_batch_size 16 \
--missing_eos_penalty 1.0 \
--stop_token eos \
--kl_coef 0.03
检查点和实验跟踪可在以下位置获得
为了评估,我们使用 vLLM 加载检查点,并使用 GPT-4o mini 作为评判模型来评估生成的 TL;DR 与参考 TL;DR 的对比。有关如何使用评判器的更多信息,请参阅 评判器。
$ python examples/scripts/evals/judge_tldr.py --model_name_or_path cleanrl/EleutherAI_pythia-1b-deduped__sft__tldr --judge_model gpt-4o-mini --num_examples 1000 Model win rate: 33.00% $ python examples/scripts/evals/judge_tldr.py --model_name_or_path vwxyzjn/rloo_tldr --judge_model gpt-4o-mini --num_examples 1000 Model win rate: 51.20%
RLOO 检查点获得了 51.2% 的首选率,而 SFT 检查点的首选率为 33.0%。这是一个很好的迹象,表明 RLOO 训练正在按预期工作。
指标
# pip install openrlbenchmark==0.2.1a5
# see https://github.com/openrlbenchmark/openrlbenchmark#get-started for documentation
# to use it, change `?we=huggingface&wpn=trl` to your own project and `?tag=pr-1540` to your own tag
python -m openrlbenchmark.rlops_multi_metrics \
--filters '?we=huggingface&wpn=trl&xaxis=train/episode&ceik=output_dir&cen=sft_model_path&metrics=train/objective/rlhf_reward&metrics=train/objective/scores&metrics=train/objective/kl&metrics=train/objective/non_score_reward&metrics=train/objective/entropy&metrics=train/policy/approxkl_avg&metrics=train/policy/clipfrac_avg&metrics=train/loss/policy_avg&metrics=train/policy/entropy_avg&metrics=train/val/ratio&metrics=train/val/ratio_var&metrics=train/val/num_eos_tokens&metrics=train/lr&metrics=train/eps' \
"cleanrl/EleutherAI_pythia-1b-deduped__sft__tldr?tag=pr-1540" \
--env-ids models/minimal/rloo_tldr \
--pc.ncols 4 \
--pc.ncols-legend 1 \
--pc.xlabel "Episode" \
--output-filename benchmark/trl/pr-1540/rloo \
--scan-history
Reinforce++
Jian Hu 的 Reinforce++ 报告提出了几个优化技巧,以增强 RLHF 的性能和稳定性。它们包括
- 裁剪奖励:将奖励值限制在特定范围内,以减轻极端奖励对模型更新的影响,从而防止梯度爆炸
- 归一化奖励:将奖励缩放为平均值为 0,标准差为 1,这有助于稳定训练过程
- 归一化优势:将优势缩放为平均值为 0,标准差为 1,这有助于稳定训练过程
- 使用 token 级别 KL 惩罚(定义为报告的公式 (1))而不是序列级别 KL 惩罚(默认)
这些选项可通过 RLOOConfig 类中的相应参数获得。
RLOOTrainer
class trl.RLOOTrainer
< source >( config: RLOOConfig processing_class: typing.Union[transformers.tokenization_utils_base.PreTrainedTokenizerBase, transformers.image_processing_utils.BaseImageProcessor, transformers.feature_extraction_utils.FeatureExtractionMixin, transformers.processing_utils.ProcessorMixin, NoneType] policy: Module ref_policy: Module reward_model: typing.Union[torch.nn.modules.module.Module, typing.Callable[[list[str]], list[float]]] train_dataset: Dataset data_collator: typing.Optional[transformers.data.data_collator.DataCollatorWithPadding] = None eval_dataset: typing.Union[datasets.arrow_dataset.Dataset, dict[str, datasets.arrow_dataset.Dataset], NoneType] = None optimizers: tuple = (None, None) callbacks: typing.Optional[list[transformers.trainer_callback.TrainerCallback]] = None )
create_model_card
< source >( model_name: typing.Optional[str] = None dataset_name: typing.Optional[str] = None tags: typing.Union[str, list[str], NoneType] = None )
使用 Trainer
可用的信息创建模型卡的草稿。
RLOOConfig
class trl.RLOOConfig
< source >( output_dir: typing.Optional[str] = None overwrite_output_dir: bool = False do_train: bool = False do_eval: bool = False do_predict: bool = False eval_strategy: typing.Union[transformers.trainer_utils.IntervalStrategy, str] = 'no' prediction_loss_only: bool = False per_device_train_batch_size: int = 8 per_device_eval_batch_size: int = 8 per_gpu_train_batch_size: typing.Optional[int] = None per_gpu_eval_batch_size: typing.Optional[int] = None gradient_accumulation_steps: int = 1 eval_accumulation_steps: typing.Optional[int] = None eval_delay: typing.Optional[float] = 0 torch_empty_cache_steps: typing.Optional[int] = None learning_rate: float = 5e-05 weight_decay: float = 0.0 adam_beta1: float = 0.9 adam_beta2: float = 0.999 adam_epsilon: float = 1e-08 max_grad_norm: float = 1.0 num_train_epochs: float = 3.0 max_steps: int = -1 lr_scheduler_type: typing.Union[transformers.trainer_utils.SchedulerType, str] = 'linear' lr_scheduler_kwargs: typing.Union[dict, str, NoneType] = <factory> warmup_ratio: float = 0.0 warmup_steps: int = 0 log_level: typing.Optional[str] = 'passive' log_level_replica: typing.Optional[str] = 'warning' log_on_each_node: bool = True logging_dir: typing.Optional[str] = None logging_strategy: typing.Union[transformers.trainer_utils.IntervalStrategy, str] = 'steps' logging_first_step: bool = False logging_steps: float = 500 logging_nan_inf_filter: bool = True save_strategy: typing.Union[transformers.trainer_utils.SaveStrategy, str] = 'steps' save_steps: float = 500 save_total_limit: typing.Optional[int] = None save_safetensors: typing.Optional[bool] = True save_on_each_node: bool = False save_only_model: bool = False restore_callback_states_from_checkpoint: bool = False no_cuda: bool = False use_cpu: bool = False use_mps_device: bool = False seed: int = 42 data_seed: typing.Optional[int] = None jit_mode_eval: bool = False use_ipex: bool = False bf16: bool = False fp16: bool = False fp16_opt_level: str = 'O1' half_precision_backend: str = 'auto' bf16_full_eval: bool = False fp16_full_eval: bool = False tf32: typing.Optional[bool] = None local_rank: int = -1 ddp_backend: typing.Optional[str] = None tpu_num_cores: typing.Optional[int] = None tpu_metrics_debug: bool = False debug: typing.Union[str, list[transformers.debug_utils.DebugOption]] = '' dataloader_drop_last: bool = False eval_steps: typing.Optional[float] = None dataloader_num_workers: int = 0 dataloader_prefetch_factor: typing.Optional[int] = None past_index: int = -1 run_name: typing.Optional[str] = None disable_tqdm: typing.Optional[bool] = None remove_unused_columns: typing.Optional[bool] = True label_names: typing.Optional[list[str]] = None load_best_model_at_end: typing.Optional[bool] = False metric_for_best_model: typing.Optional[str] = None greater_is_better: typing.Optional[bool] = None ignore_data_skip: bool = False fsdp: typing.Union[list[transformers.trainer_utils.FSDPOption], str, NoneType] = '' fsdp_min_num_params: int = 0 fsdp_config: typing.Union[dict, str, NoneType] = None tp_size: typing.Optional[int] = 0 fsdp_transformer_layer_cls_to_wrap: typing.Optional[str] = None accelerator_config: typing.Union[dict, str, NoneType] = None deepspeed: typing.Union[dict, str, NoneType] = None label_smoothing_factor: float = 0.0 optim: typing.Union[transformers.training_args.OptimizerNames, str] = 'adamw_torch' optim_args: typing.Optional[str] = None adafactor: bool = False group_by_length: bool = False length_column_name: typing.Optional[str] = 'length' report_to: typing.Union[NoneType, str, list[str]] = None ddp_find_unused_parameters: typing.Optional[bool] = None ddp_bucket_cap_mb: typing.Optional[int] = None ddp_broadcast_buffers: typing.Optional[bool] = None dataloader_pin_memory: bool = True dataloader_persistent_workers: bool = False skip_memory_metrics: bool = True use_legacy_prediction_loop: bool = False push_to_hub: bool = False resume_from_checkpoint: typing.Optional[str] = None hub_model_id: typing.Optional[str] = None hub_strategy: typing.Union[transformers.trainer_utils.HubStrategy, str] = 'every_save' hub_token: typing.Optional[str] = None hub_private_repo: typing.Optional[bool] = None hub_always_push: bool = False gradient_checkpointing: bool = False gradient_checkpointing_kwargs: typing.Union[dict, str, NoneType] = None include_inputs_for_metrics: bool = False include_for_metrics: list = <factory> eval_do_concat_batches: bool = True fp16_backend: str = 'auto' push_to_hub_model_id: typing.Optional[str] = None push_to_hub_organization: typing.Optional[str] = None push_to_hub_token: typing.Optional[str] = None mp_parameters: str = '' auto_find_batch_size: bool = False full_determinism: bool = False torchdynamo: typing.Optional[str] = None ray_scope: typing.Optional[str] = 'last' ddp_timeout: typing.Optional[int] = 1800 torch_compile: bool = False torch_compile_backend: typing.Optional[str] = None torch_compile_mode: typing.Optional[str] = None include_tokens_per_second: typing.Optional[bool] = False include_num_input_tokens_seen: typing.Optional[bool] = False neftune_noise_alpha: typing.Optional[float] = None optim_target_modules: typing.Union[NoneType, str, list[str]] = None batch_eval_metrics: bool = False eval_on_start: bool = False use_liger_kernel: typing.Optional[bool] = False eval_use_gather_object: typing.Optional[bool] = False average_tokens_across_devices: typing.Optional[bool] = False dataset_num_proc: typing.Optional[int] = None num_mini_batches: int = 1 total_episodes: typing.Optional[int] = None local_rollout_forward_batch_size: int = 64 num_sample_generations: int = 10 response_length: int = 53 stop_token: typing.Optional[typing.Literal['eos']] = None stop_token_id: typing.Optional[int] = None temperature: float = 0.7 missing_eos_penalty: typing.Optional[float] = None sft_model_path: str = 'EleutherAI/pythia-160m' world_size: typing.Optional[int] = None num_total_batches: typing.Optional[int] = None micro_batch_size: typing.Optional[int] = None local_batch_size: typing.Optional[int] = None batch_size: typing.Optional[int] = None local_mini_batch_size: typing.Optional[int] = None mini_batch_size: typing.Optional[int] = None exp_name: str = 'rloo_config' reward_model_path: str = 'EleutherAI/pythia-160m' num_ppo_epochs: int = 4 whiten_rewards: bool = False kl_coef: float = 0.05 cliprange: float = 0.2 rloo_k: int = 2 normalize_reward: bool = False reward_clip_range: float = 10.0 normalize_advantage: bool = False token_level_kl: bool = False ds3_gather_for_generation: bool = True )
参数
- exp_name (
str
, 可选, 默认为os.path.basename(__file__)[ -- -len(".py")]
): 此实验的名称。 - reward_model_path (
str
, 可选, 默认为"EleutherAI/pythia-160m"
) — 奖励模型的路径。 - num_ppo_epochs (
int
, 可选, 默认为4
) — 训练的 epoch 数量。 - whiten_rewards (
bool
, 可选, 默认为False
) — 是否对奖励进行白化处理。 - kl_coef (
float
, 可选, 默认为0.05
) — KL 系数。 - cliprange (
float
, 可选, 默认为0.2
) — 裁剪范围。 - rloo_k (
int
, 可选, 默认为2
) — REINFORCE 留一法 (RLOO) 每个提示的在线样本数。 - normalize_reward (
bool
, 可选, 默认为False
) — 是否标准化奖励。 - reward_clip_range (
float
, 可选, 默认为10.0
) — 奖励的裁剪范围。 - normalize_advantage (
bool
, 可选, 默认为False
) — 是否标准化优势函数。 - token_level_kl (
bool
, 可选, 默认为True
) — 是否使用 token 级别 KL 惩罚或序列级别 KL 惩罚。 - ds3_gather_for_generation (
bool
, 可选, 默认为True
) — 此设置应用于 DeepSpeed ZeRO-3。如果启用,策略模型权重将在生成时收集,从而提高生成速度。但是,禁用此选项允许训练超出单个 GPU VRAM 容量的模型,但会以较慢的生成速度为代价。
用于 RLOOTrainer 的配置类。
使用 HfArgumentParser
,我们可以将此类转换为可以在命令行中指定的 argparse 参数。