ControlNet
ControlNet 在 Adding Conditional Control to Text-to-Image Diffusion Models 这篇论文中被介绍,作者是 Lvmin Zhang, Anyi Rao, 和 Maneesh Agrawala。
通过 ControlNet 模型,您可以提供额外的控制图像来调节和控制 Stable Diffusion 的生成。例如,如果您提供深度图,ControlNet 模型将生成一个图像,该图像将保留深度图中的空间信息。这是一种更灵活和准确的方式来控制图像生成过程。
该论文的摘要是
我们提出了 ControlNet,一种神经网络架构,用于为大型预训练文本到图像扩散模型添加空间条件控制。ControlNet 锁定生产就绪的大型扩散模型,并重用其通过数十亿图像预训练的深度和鲁棒的编码层,作为学习各种条件控制的强大骨干。该神经网络架构与“零卷积”(零初始化的卷积层)相连,这些卷积层从零开始逐渐增加参数,并确保没有有害噪声会影响微调。我们使用 Stable Diffusion 测试了各种条件控制,例如,边缘、深度、分割、人体姿势等,使用单条件或多条件,有或没有提示。我们表明,ControlNet 的训练对于小型(<50k)和大型(>1m)数据集都是稳健的。广泛的结果表明,ControlNet 可以促进更广泛的应用来控制图像扩散模型。
此模型由 takuma104 贡献。❤️
原始代码库可以在 lllyasviel/ControlNet 找到,您可以在 lllyasviel’s Hub 个人资料中找到官方 ControlNet 检查点。
请务必查看 Schedulers 指南,了解如何探索调度器速度和质量之间的权衡,并查看 跨 pipelines 重用组件 部分,了解如何有效地将相同组件加载到多个 pipelines 中。
StableDiffusionControlNetPipeline
class diffusers.StableDiffusionControlNetPipeline
< source >( vae: AutoencoderKL text_encoder: CLIPTextModel tokenizer: CLIPTokenizer unet: UNet2DConditionModel controlnet: Union scheduler: KarrasDiffusionSchedulers safety_checker: StableDiffusionSafetyChecker feature_extractor: CLIPImageProcessor image_encoder: CLIPVisionModelWithProjection = None requires_safety_checker: bool = True )
参数
- vae (AutoencoderKL) — 变分自动编码器 (VAE) 模型,用于将图像编码和解码为潜在表示形式,以及从潜在表示形式解码为图像。
- text_encoder (CLIPTextModel) — 冻结的文本编码器 (clip-vit-large-patch14)。
- tokenizer (CLIPTokenizer) — 用于标记文本的
CLIPTokenizer
。 - unet (UNet2DConditionModel) — 用于对编码后的图像潜在空间进行去噪的
UNet2DConditionModel
。 - controlnet (ControlNetModel 或
List[ControlNetModel]
) — 在去噪过程中为unet
提供额外的条件控制。 如果您将多个 ControlNet 设置为列表,则每个 ControlNet 的输出将相加在一起,以创建一个组合的额外条件控制。 - scheduler (SchedulerMixin) — 调度器,用于与
unet
结合使用,以对编码后的图像潜在空间进行去噪。 可以是 DDIMScheduler、 LMSDiscreteScheduler 或 PNDMScheduler 之一。 - safety_checker (
StableDiffusionSafetyChecker
) — 分类模块,用于估计生成的图像是否可能被认为是冒犯性或有害的。 请参阅 模型卡片,了解有关模型潜在危害的更多详细信息。 - feature_extractor (CLIPImageProcessor) —
CLIPImageProcessor
,用于从生成的图像中提取特征;用作safety_checker
的输入。
使用 ControlNet 指导的 Stable Diffusion 文本到图像生成管线。
此模型继承自 DiffusionPipeline。查看超类文档,了解为所有管线实现的通用方法(下载、保存、在特定设备上运行等)。
该管线还继承了以下加载方法
- load_textual_inversion() 用于加载文本反演嵌入
- load_lora_weights() 用于加载 LoRA 权重
- save_lora_weights() 用于保存 LoRA 权重
- from_single_file() 用于加载
.ckpt
文件 - load_ip_adapter() 用于加载 IP 适配器
__call__
< source >( prompt: Union = None image: Union = None height: Optional = None width: Optional = None num_inference_steps: int = 50 timesteps: List = None sigmas: List = None guidance_scale: float = 7.5 negative_prompt: Union = None num_images_per_prompt: Optional = 1 eta: float = 0.0 generator: Union = None latents: Optional = None prompt_embeds: Optional = None negative_prompt_embeds: Optional = None ip_adapter_image: Union = None ip_adapter_image_embeds: Optional = None output_type: Optional = 'pil' return_dict: bool = True cross_attention_kwargs: Optional = None controlnet_conditioning_scale: Union = 1.0 guess_mode: bool = False control_guidance_start: Union = 0.0 control_guidance_end: Union = 1.0 clip_skip: Optional = None callback_on_step_end: Union = None callback_on_step_end_tensor_inputs: List = ['latents'] **kwargs ) → StableDiffusionPipelineOutput or tuple
参数
- prompt (
str
或List[str]
, 可选) — 用于引导图像生成的提示或提示列表。 如果未定义,则需要传递prompt_embeds
。 - image (
torch.Tensor
,PIL.Image.Image
,np.ndarray
,List[torch.Tensor]
,List[PIL.Image.Image]
,List[np.ndarray]
, —List[List[torch.Tensor]]
,List[List[np.ndarray]]
或List[List[PIL.Image.Image]]
): ControlNet 输入条件,为unet
生成提供指导。 如果类型指定为torch.Tensor
,则按原样传递给 ControlNet。PIL.Image.Image
也可以接受为图像。 输出图像的尺寸默认为image
的尺寸。 如果传递了 height 和/或 width,则会相应地调整image
的大小。 如果在init
中指定了多个 ControlNet,则必须将图像作为列表传递,以便列表的每个元素都可以正确地批量处理,以输入到单个 ControlNet。 当prompt
是列表,并且为单个 ControlNet 传递了图像列表时,每个图像将与prompt
列表中的每个提示配对。 这也适用于多个 ControlNet,其中可以传递图像列表的列表,以便为每个提示和每个 ControlNet 进行批量处理。 - height (
int
, 可选, 默认为self.unet.config.sample_size * self.vae_scale_factor
) — 生成图像的高度像素。 - width (
int
, 可选, 默认为self.unet.config.sample_size * self.vae_scale_factor
) — 生成图像的宽度像素。 - num_inference_steps (
int
, 可选, 默认为 50) — 去噪步骤的数量。 更多的去噪步骤通常会带来更高质量的图像,但代价是推理速度较慢。 - timesteps (
List[int]
, 可选) — 用于支持其set_timesteps
方法中timesteps
参数的调度器的去噪过程的自定义时间步长。 如果未定义,将使用传递num_inference_steps
时的默认行为。 必须按降序排列。 - sigmas (
List[float]
, 可选) — 用于支持其set_timesteps
方法中sigmas
参数的调度器的去噪过程的自定义 sigmas。 如果未定义,将使用传递num_inference_steps
时的默认行为。 - guidance_scale (
float
, 可选, 默认为 7.5) — 更高的 guidance scale 值会鼓励模型生成与文本prompt
紧密相关的图像,但会降低图像质量。 当guidance_scale > 1
时,启用 Guidance scale。 - negative_prompt (
str
或List[str]
, 可选) — 用于指导图像生成中不应包含的内容的提示或提示列表。 如果未定义,则需要改为传递negative_prompt_embeds
。 当不使用 guidance 时(guidance_scale < 1
),将被忽略。 - num_images_per_prompt (
int
, 可选, 默认为 1) — 每个提示要生成的图像数量。 - eta (
float
, 可选, 默认为 0.0) — 对应于 DDIM 论文中的参数 eta (η)。 仅适用于 DDIMScheduler,在其他调度器中将被忽略。 - generator (
torch.Generator
或List[torch.Generator]
, 可选) — 用于使生成确定性的torch.Generator
。 - latents (
torch.Tensor
, 可选) — 从高斯分布中采样的预生成噪声潜在空间,用作图像生成的输入。 可用于使用不同的提示调整相同的生成。 如果未提供,则通过使用提供的随机generator
进行采样来生成潜在张量。 - prompt_embeds (
torch.Tensor
, 可选) — 预生成的文本嵌入。 可用于轻松调整文本输入(提示权重)。 如果未提供,则从prompt
输入参数生成文本嵌入。 - negative_prompt_embeds (
torch.Tensor
, 可选) — 预生成的负面文本嵌入。 可用于轻松调整文本输入(提示权重)。 如果未提供,则从negative_prompt
输入参数生成negative_prompt_embeds
。 ip_adapter_image — (PipelineImageInput
, 可选): 与 IP 适配器一起使用的可选图像输入。 - ip_adapter_image_embeds (
List[torch.Tensor]
, 可选) — IP-Adapter 的预生成图像嵌入。它应该是一个列表,长度与 IP-Adapter 的数量相同。每个元素应该是一个形状为(batch_size, num_images, emb_dim)
的张量。如果do_classifier_free_guidance
设置为True
,则应包含负图像嵌入。如果未提供,则嵌入将从ip_adapter_image
输入参数计算得出。 - output_type (
str
, 可选, 默认为"pil"
) — 生成图像的输出格式。在PIL.Image
或np.array
之间选择。 - return_dict (
bool
, 可选, 默认为True
) — 是否返回 StableDiffusionPipelineOutput 而不是普通元组。 - callback (
Callable
, 可选) — 在推理期间每callback_steps
步调用的函数。该函数使用以下参数调用:callback(step: int, timestep: int, latents: torch.Tensor)
。 - callback_steps (
int
, 可选, 默认为 1) — 调用callback
函数的频率。如果未指定,则在每个步骤都调用回调。 - cross_attention_kwargs (
dict
, 可选) — 一个 kwargs 字典,如果指定,则传递给self.processor
中定义的AttentionProcessor
。 - controlnet_conditioning_scale (
float
或List[float]
, 可选, 默认为 1.0) — ControlNet 的输出在添加到原始unet
中的残差之前,会乘以controlnet_conditioning_scale
。如果在init
中指定了多个 ControlNet,则可以将相应的比例设置为列表。 - guess_mode (
bool
, 可选, 默认为False
) — 即使您删除所有提示,ControlNet 编码器也会尝试识别输入图像的内容。建议guidance_scale
值介于 3.0 和 5.0 之间。 - control_guidance_start (
float
或List[float]
, 可选, 默认为 0.0) — ControlNet 开始应用的占总步骤数的百分比。 - control_guidance_end (
float
或List[float]
, 可选, 默认为 1.0) — ControlNet 停止应用的占总步骤数的百分比。 - clip_skip (
int
, 可选) — 从 CLIP 中跳过的层数,用于计算提示嵌入。值为 1 表示将使用倒数第二层的输出计算提示嵌入。 - callback_on_step_end (
Callable
,PipelineCallback
,MultiPipelineCallbacks
, 可选) — 在推理期间的每个去噪步骤结束时调用的函数或PipelineCallback
或MultiPipelineCallbacks
的子类。使用以下参数:callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)
。callback_kwargs
将包含callback_on_step_end_tensor_inputs
指定的所有张量的列表。 - callback_on_step_end_tensor_inputs (
List
, 可选) —callback_on_step_end
函数的张量输入列表。列表中指定的张量将作为callback_kwargs
参数传递。您将只能包含管道类的._callback_tensor_inputs
属性中列出的变量。
返回值
StableDiffusionPipelineOutput 或 tuple
如果 return_dict
为 True
,则返回 StableDiffusionPipelineOutput,否则返回 tuple
,其中第一个元素是包含生成图像的列表,第二个元素是 bool
列表,指示相应的生成图像是否包含“不适合工作场所观看”(nsfw)的内容。
用于生成管道的调用函数。
示例
>>> # !pip install opencv-python transformers accelerate
>>> from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
>>> from diffusers.utils import load_image
>>> import numpy as np
>>> import torch
>>> import cv2
>>> from PIL import Image
>>> # download an image
>>> image = load_image(
... "https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png"
... )
>>> image = np.array(image)
>>> # get canny image
>>> image = cv2.Canny(image, 100, 200)
>>> image = image[:, :, None]
>>> image = np.concatenate([image, image, image], axis=2)
>>> canny_image = Image.fromarray(image)
>>> # load control net and stable diffusion v1-5
>>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
>>> pipe = StableDiffusionControlNetPipeline.from_pretrained(
... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
... )
>>> # speed up diffusion process with faster scheduler and memory optimization
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
>>> # remove following line if xformers is not installed
>>> pipe.enable_xformers_memory_efficient_attention()
>>> pipe.enable_model_cpu_offload()
>>> # generate image
>>> generator = torch.manual_seed(0)
>>> image = pipe(
... "futuristic-looking woman", num_inference_steps=20, generator=generator, image=canny_image
... ).images[0]
enable_attention_slicing
< source >( slice_size: Union = 'auto' )
启用切片注意力计算。启用此选项后,注意力模块会将输入张量分割成切片,以分步计算注意力。对于多个注意力头,计算将按顺序对每个头执行。这有助于节省一些内存,以换取速度的少量降低。
⚠️ 如果您已经在使用 PyTorch 2.0 或 xFormers 的 scaled_dot_product_attention
(SDPA),请不要启用注意力切片。这些注意力计算已经非常节省内存,因此您不需要启用此功能。如果您在 SDPA 或 xFormers 的情况下启用注意力切片,可能会导致严重的速度下降!
示例
>>> import torch
>>> from diffusers import StableDiffusionPipeline
>>> pipe = StableDiffusionPipeline.from_pretrained(
... "runwayml/stable-diffusion-v1-5",
... torch_dtype=torch.float16,
... use_safetensors=True,
... )
>>> prompt = "a photo of an astronaut riding a horse on mars"
>>> pipe.enable_attention_slicing()
>>> image = pipe(prompt).images[0]
禁用切片注意力计算。如果之前调用了 enable_attention_slicing
,则注意力将在一个步骤中计算。
启用切片 VAE 解码。启用此选项后,VAE 将把输入张量分割成切片,以分步计算解码。这有助于节省一些内存并允许更大的批量大小。
禁用切片 VAE 解码。如果之前启用了 enable_vae_slicing
,此方法将恢复为一个步骤计算解码。
enable_xformers_memory_efficient_attention
< source >( attention_op: Optional = None )
参数
- attention_op (
Callable
, 可选) — 覆盖默认的None
运算符,用作 xFormers 的memory_efficient_attention()
函数的op
参数。
启用来自 xFormers 的内存高效注意力。启用此选项后,您应该观察到 GPU 内存使用率降低,并且推理期间可能会加速。不保证训练期间的加速。
⚠️ 当内存高效注意力和切片注意力都启用时,内存高效注意力优先。
示例
>>> import torch
>>> from diffusers import DiffusionPipeline
>>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp
>>> pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16)
>>> pipe = pipe.to("cuda")
>>> pipe.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
>>> # Workaround for not accepting attention shape using VAE for Flash Attention
>>> pipe.vae.enable_xformers_memory_efficient_attention(attention_op=None)
禁用来自 xFormers 的内存高效注意力。
load_textual_inversion
< source >( pretrained_model_name_or_path: Union token: Union = None tokenizer: Optional = None text_encoder: Optional = None **kwargs )
参数
- pretrained_model_name_or_path (
str
或os.PathLike
或List[str or os.PathLike]
或Dict
或List[Dict]
) — 可以是以下之一或它们的列表:- 一个字符串,预训练模型的模型 ID (例如
sd-concepts-library/low-poly-hd-logos-icons
),托管在 Hub 上。 - 一个指向包含文本反演权重的目录的路径 (例如
./my_text_inversion_directory/
)。 - 一个指向包含文本反演权重的文件的路径 (例如
./my_text_inversions.pt
)。 - 一个 torch state dict。
- 一个字符串,预训练模型的模型 ID (例如
- token (
str
或List[str]
, 可选) — 覆盖用于文本反演权重的 token。如果pretrained_model_name_or_path
是一个列表,那么token
也必须是等长的列表。 - text_encoder (CLIPTextModel, 可选) — 冻结的文本编码器 (clip-vit-large-patch14)。如果未指定,函数将使用 self.tokenizer。
- tokenizer (CLIPTokenizer, 可选) — 用于 token 化文本的
CLIPTokenizer
。如果未指定,函数将使用 self.tokenizer。 - weight_name (
str
, 可选) — 自定义权重文件的名称。当以下情况时应使用此参数:- 保存的文本反演文件是 🤗 Diffusers 格式,但以特定的权重名称保存,例如
text_inv.bin
。 - 保存的文本反演文件是 Automatic1111 格式。
- 保存的文本反演文件是 🤗 Diffusers 格式,但以特定的权重名称保存,例如
- cache_dir (
Union[str, os.PathLike]
, 可选) — 缓存下载的预训练模型配置的目录路径(如果未使用标准缓存)。 - force_download (
bool
, 可选, 默认为False
) — 是否强制(重新)下载模型权重和配置文件,覆盖已缓存的版本(如果存在)。 - proxies (
Dict[str, str]
, 可选) — 代理服务器字典,按协议或端点使用,例如,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}
。代理用于每个请求。 - local_files_only (
bool
, 可选, 默认为False
) — 是否仅加载本地模型权重和配置文件。如果设置为True
,则不会从 Hub 下载模型。 - token (
str
或bool
, 可选) — 用作远程文件的 HTTP Bearer 授权的 token。如果为True
,则使用从diffusers-cli login
生成的 token(存储在~/.huggingface
中)。 - revision (
str
, 可选, 默认为"main"
) — 要使用的特定模型版本。它可以是分支名称、标签名称、提交 ID 或 Git 允许的任何标识符。 - subfolder (
str
, 可选, 默认为""
) — Hub 或本地更大的模型仓库中模型文件的子文件夹位置。 - mirror (
str
, 可选) — 镜像源,用于解决在中国下载模型时的可访问性问题。我们不保证来源的及时性或安全性,您应该参考镜像站点以获取更多信息。
将文本反演 (Textual Inversion) 嵌入加载到 StableDiffusionPipeline 的文本编码器中(支持 🤗 Diffusers 和 Automatic1111 格式)。
示例
加载 🤗 Diffusers 格式的文本反演嵌入向量:
from diffusers import StableDiffusionPipeline
import torch
model_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
pipe.load_textual_inversion("sd-concepts-library/cat-toy")
prompt = "A <cat-toy> backpack"
image = pipe(prompt, num_inference_steps=50).images[0]
image.save("cat-backpack.png")
要加载 Automatic1111 格式的文本反演嵌入向量,请确保先下载向量(例如从 civitAI),然后加载向量
本地:
from diffusers import StableDiffusionPipeline
import torch
model_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
pipe.load_textual_inversion("./charturnerv2.pt", token="charturnerv2")
prompt = "charturnerv2, multiple views of the same character in the same outfit, a character turnaround of a woman wearing a black jacket and red shirt, best quality, intricate details."
image = pipe(prompt, num_inference_steps=50).images[0]
image.save("character.png")
encode_prompt
< source >( prompt device num_images_per_prompt do_classifier_free_guidance negative_prompt = None prompt_embeds: Optional = None negative_prompt_embeds: Optional = None lora_scale: Optional = None clip_skip: Optional = None )
参数
- prompt (
str
或List[str]
, 可选) — 要编码的 prompt。 device — (torch.device
): torch 设备 - num_images_per_prompt (
int
) — 每个 prompt 应生成的图像数量。 - do_classifier_free_guidance (
bool
) — 是否使用无分类器引导(classifier free guidance)。 - negative_prompt (
str
或List[str]
, 可选) — 不用于引导图像生成的 prompt 或 prompts。如果未定义,则必须传递negative_prompt_embeds
代替。当不使用引导时忽略(即,如果guidance_scale
小于1
则忽略)。 - prompt_embeds (
torch.Tensor
, 可选) — 预生成的文本嵌入。可用于轻松调整文本输入,例如 prompt 权重。如果未提供,将从prompt
输入参数生成文本嵌入。 - negative_prompt_embeds (
torch.Tensor
, 可选) — 预生成的负面文本嵌入。可用于轻松调整文本输入,例如 prompt 权重。如果未提供,将从negative_prompt
输入参数生成 negative_prompt_embeds。 - lora_scale (
float
, 可选) — LoRA 缩放比例,如果加载了 LoRA 层,则将应用于文本编码器的所有 LoRA 层。 - clip_skip (
int
, 可选) — 从 CLIP 中跳过的层数,用于计算 prompt 嵌入。值为 1 表示将使用预最终层的输出计算 prompt 嵌入。
将 prompt 编码为文本编码器隐藏状态。
get_guidance_scale_embedding
< source >( w: Tensor embedding_dim: int = 512 dtype: dtype = torch.float32 ) → torch.Tensor
StableDiffusionControlNetImg2ImgPipeline
class diffusers.StableDiffusionControlNetImg2ImgPipeline
< source >( vae: AutoencoderKL text_encoder: CLIPTextModel tokenizer: CLIPTokenizer unet: UNet2DConditionModel controlnet: Union scheduler: KarrasDiffusionSchedulers safety_checker: StableDiffusionSafetyChecker feature_extractor: CLIPImageProcessor image_encoder: CLIPVisionModelWithProjection = None requires_safety_checker: bool = True )
参数
- vae (AutoencoderKL) — 用于将图像编码和解码为潜在表示的变分自编码器 (VAE) 模型。
- text_encoder (CLIPTextModel) — 冻结的文本编码器 (clip-vit-large-patch14)。
- tokenizer (CLIPTokenizer) — 用于文本标记化的
CLIPTokenizer
。 - unet (UNet2DConditionModel) — 用于对编码后的图像潜在空间进行去噪的
UNet2DConditionModel
。 - controlnet (ControlNetModel 或
List[ControlNetModel]
) — 在去噪过程中,为unet
提供额外的条件控制。 如果您将多个 ControlNet 设置为列表,则每个 ControlNet 的输出将相加在一起,以创建一个组合的额外条件控制。 - scheduler (SchedulerMixin) — 一种调度器,与
unet
结合使用,以对编码后的图像潜在空间进行去噪。 可以是 DDIMScheduler、 LMSDiscreteScheduler 或 PNDMScheduler 之一。 - safety_checker (
StableDiffusionSafetyChecker
) — 分类模块,用于评估生成的图像是否可能被认为具有攻击性或有害。 有关模型潜在危害的更多详细信息,请参阅模型卡。 - feature_extractor (CLIPImageProcessor) — 一个
CLIPImageProcessor
,用于从生成的图像中提取特征; 用作safety_checker
的输入。
使用 Stable Diffusion 和 ControlNet 指导的图像到图像生成管线。
此模型继承自 DiffusionPipeline。查看超类文档,了解为所有管线实现的通用方法(下载、保存、在特定设备上运行等)。
该管线还继承了以下加载方法
- load_textual_inversion() 用于加载文本反演嵌入
- load_lora_weights() 用于加载 LoRA 权重
- save_lora_weights() 用于保存 LoRA 权重
- from_single_file() 用于加载
.ckpt
文件 - load_ip_adapter() 用于加载 IP 适配器
__call__
< source >( prompt: Union = None image: Union = None control_image: Union = None height: Optional = None width: Optional = None strength: float = 0.8 num_inference_steps: int = 50 guidance_scale: float = 7.5 negative_prompt: Union = None num_images_per_prompt: Optional = 1 eta: float = 0.0 generator: Union = None latents: Optional = None prompt_embeds: Optional = None negative_prompt_embeds: Optional = None ip_adapter_image: Union = None ip_adapter_image_embeds: Optional = None output_type: Optional = 'pil' return_dict: bool = True cross_attention_kwargs: Optional = None controlnet_conditioning_scale: Union = 0.8 guess_mode: bool = False control_guidance_start: Union = 0.0 control_guidance_end: Union = 1.0 clip_skip: Optional = None callback_on_step_end: Union = None callback_on_step_end_tensor_inputs: List = ['latents'] **kwargs ) → StableDiffusionPipelineOutput or tuple
参数
- prompt (
str
或List[str]
, 可选) — 用于引导图像生成的提示或提示列表。 如果未定义,则需要传递prompt_embeds
。 - image (
torch.Tensor
,PIL.Image.Image
,np.ndarray
,List[torch.Tensor]
,List[PIL.Image.Image]
,List[np.ndarray]
, —List[List[torch.Tensor]]
,List[List[np.ndarray]]
或List[List[PIL.Image.Image]]
): 用作图像生成过程起点的初始图像。 也可以接受图像潜在表示作为image
,如果直接传递潜在表示,则不会再次编码。 - control_image (
torch.Tensor
,PIL.Image.Image
,np.ndarray
,List[torch.Tensor]
,List[PIL.Image.Image]
,List[np.ndarray]
, —List[List[torch.Tensor]]
,List[List[np.ndarray]]
或List[List[PIL.Image.Image]]
): ControlNet 输入条件,为unet
生成提供指导。 如果类型指定为torch.Tensor
,则按原样传递给 ControlNet。PIL.Image.Image
也可以接受为图像。 输出图像的尺寸默认为image
的尺寸。 如果传递了 height 和/或 width,则会相应地调整image
的大小。 如果在init
中指定了多个 ControlNet,则必须将图像作为列表传递,以便可以正确批处理列表中的每个元素,以输入到单个 ControlNet。 - height (
int
, 可选, 默认为self.unet.config.sample_size * self.vae_scale_factor
) — 生成图像的高度像素。 - width (
int
, 可选, 默认为self.unet.config.sample_size * self.vae_scale_factor
) — 生成图像的宽度像素。 - strength (
float
, 可选, 默认为 0.8) — 指示转换参考image
的程度。 必须介于 0 和 1 之间。image
用作起点,strength
越高,添加的噪声就越多。 去噪步骤的数量取决于最初添加的噪声量。 当strength
为 1 时,添加的噪声最大,去噪过程将运行完整数量的迭代次数,即在num_inference_steps
中指定的次数。 值为 1 实际上会忽略image
。 - num_inference_steps (
int
, 可选, 默认为 50) — 去噪步骤的数量。 更多的去噪步骤通常会以较慢的推理速度为代价,从而生成更高质量的图像。 - guidance_scale (
float
, 可选, 默认为 7.5) — 较高的 guidance scale 值会鼓励模型生成与文本prompt
紧密相关的图像,但会以降低图像质量为代价。 当guidance_scale > 1
时,将启用 Guidance scale。 - negative_prompt (
str
或List[str]
, 可选) — 用于引导图像生成中不应包含的内容的提示或提示列表。 如果未定义,则需要改为传递negative_prompt_embeds
。 不使用 guidance 时忽略(guidance_scale < 1
)。 - num_images_per_prompt (
int
, 可选, 默认为 1) — 每个 prompt 生成的图像数量。 - eta (
float
, 可选, 默认为 0.0) — 对应于 DDIM 论文中的参数 eta (η)。 仅适用于 DDIMScheduler,在其他调度器中将被忽略。 - generator (
torch.Generator
或List[torch.Generator]
, 可选) — 用于使生成结果具有确定性的torch.Generator
。 - latents (
torch.Tensor
, 可选) — 预生成的噪声潜在空间,从高斯分布中采样,用作图像生成的输入。 可用于使用不同的 prompt 调整相同的生成结果。 如果未提供,则会通过使用提供的随机generator
进行采样来生成潜在张量。 - prompt_embeds (
torch.Tensor
, 可选) — 预生成的文本嵌入。 可用于轻松调整文本输入(提示权重)。 如果未提供,则会从prompt
输入参数生成文本嵌入。 - negative_prompt_embeds (
torch.Tensor
, 可选) — 预生成的负面文本嵌入。 可用于轻松调整文本输入(提示权重)。 如果未提供,则会从negative_prompt
输入参数生成negative_prompt_embeds
。 ip_adapter_image — (PipelineImageInput
, 可选): 与 IP 适配器一起使用的可选图像输入。 - ip_adapter_image_embeds (
List[torch.Tensor]
, 可选) — IP-Adapter 的预生成图像嵌入。 它应该是一个列表,长度与 IP 适配器的数量相同。 每个元素都应该是一个形状为(batch_size, num_images, emb_dim)
的张量。 如果do_classifier_free_guidance
设置为True
,则它应该包含负面图像嵌入。 如果未提供,则会从ip_adapter_image
输入参数计算嵌入。 - output_type (
str
, 可选, 默认为"pil"
) — 生成图像的输出格式。 在PIL.Image
或np.array
之间选择。 - return_dict (
bool
, 可选, 默认为True
) — 是否返回 StableDiffusionPipelineOutput 而不是普通元组。 - cross_attention_kwargs (
dict
, 可选) — 一个 kwargs 字典,如果指定,则会传递给self.processor
中定义的AttentionProcessor
。 - controlnet_conditioning_scale (
float
或List[float]
, 可选, 默认为 1.0) — ControlNet 的输出在添加到原始unet
中的残差之前,会乘以controlnet_conditioning_scale
。 如果在init
中指定了多个 ControlNet,则可以将相应的比例设置为列表。 - guess_mode (
bool
, 可选, 默认为False
) — 即使您删除了所有提示,ControlNet 编码器也会尝试识别输入图像的内容。 建议guidance_scale
值介于 3.0 和 5.0 之间。 - control_guidance_start (
float
或List[float]
, 可选, 默认为 0.0) — ControlNet 开始应用的总步数百分比。 - control_guidance_end (
float
或List[float]
, 可选, 默认为 1.0) — ControlNet 停止应用的总步数百分比。 - clip_skip (
int
, 可选) — 从 CLIP 跳过的层数,用于计算提示嵌入。 值 1 表示预最终层的输出将用于计算提示嵌入。 - callback_on_step_end (
Callable
,PipelineCallback
,MultiPipelineCallbacks
, 可选) — 在推理期间每个去噪步骤结束时调用的函数或PipelineCallback
或MultiPipelineCallbacks
的子类。 具有以下参数:callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)
。callback_kwargs
将包含callback_on_step_end_tensor_inputs
指定的所有张量列表。 - callback_on_step_end_tensor_inputs (
List
, 可选) —callback_on_step_end
函数的张量输入列表。 列表中指定的张量将作为callback_kwargs
参数传递。 您将只能包含管道类的._callback_tensor_inputs
属性中列出的变量。
返回值
StableDiffusionPipelineOutput 或 tuple
如果 return_dict
为 True
,则返回 StableDiffusionPipelineOutput,否则返回 tuple
,其中第一个元素是包含生成图像的列表,第二个元素是 bool
列表,指示相应的生成图像是否包含“不适合工作场所观看”(nsfw)的内容。
用于生成管道的调用函数。
示例
>>> # !pip install opencv-python transformers accelerate
>>> from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, UniPCMultistepScheduler
>>> from diffusers.utils import load_image
>>> import numpy as np
>>> import torch
>>> import cv2
>>> from PIL import Image
>>> # download an image
>>> image = load_image(
... "https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png"
... )
>>> np_image = np.array(image)
>>> # get canny image
>>> np_image = cv2.Canny(np_image, 100, 200)
>>> np_image = np_image[:, :, None]
>>> np_image = np.concatenate([np_image, np_image, np_image], axis=2)
>>> canny_image = Image.fromarray(np_image)
>>> # load control net and stable diffusion v1-5
>>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
>>> pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
... )
>>> # speed up diffusion process with faster scheduler and memory optimization
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
>>> pipe.enable_model_cpu_offload()
>>> # generate image
>>> generator = torch.manual_seed(0)
>>> image = pipe(
... "futuristic-looking woman",
... num_inference_steps=20,
... generator=generator,
... image=image,
... control_image=canny_image,
... ).images[0]
enable_attention_slicing
< source >( slice_size: Union = 'auto' )
启用切片注意力计算。启用此选项后,注意力模块会将输入张量分割成切片,以分步计算注意力。对于多个注意力头,计算将按顺序对每个头执行。这有助于节省一些内存,以换取速度的少量降低。
⚠️ 如果您已经在使用 PyTorch 2.0 或 xFormers 的 scaled_dot_product_attention
(SDPA),请不要启用注意力切片。这些注意力计算已经非常节省内存,因此您不需要启用此功能。如果您在 SDPA 或 xFormers 的情况下启用注意力切片,可能会导致严重的速度下降!
示例
>>> import torch
>>> from diffusers import StableDiffusionPipeline
>>> pipe = StableDiffusionPipeline.from_pretrained(
... "runwayml/stable-diffusion-v1-5",
... torch_dtype=torch.float16,
... use_safetensors=True,
... )
>>> prompt = "a photo of an astronaut riding a horse on mars"
>>> pipe.enable_attention_slicing()
>>> image = pipe(prompt).images[0]
禁用切片注意力计算。如果之前调用了 enable_attention_slicing
,则注意力将在一个步骤中计算。
启用切片 VAE 解码。启用此选项后,VAE 将把输入张量分割成切片,以分步计算解码。这有助于节省一些内存并允许更大的批量大小。
禁用切片 VAE 解码。如果之前启用了 enable_vae_slicing
,此方法将恢复为一个步骤计算解码。
enable_xformers_memory_efficient_attention
< source >( attention_op: Optional = None )
参数
- attention_op (
Callable
, 可选) — 覆盖默认的None
运算符,用作 xFormers 的memory_efficient_attention()
函数的op
参数。
启用来自 xFormers 的内存高效注意力。启用此选项后,您应该观察到 GPU 内存使用率降低,并且推理期间可能会加速。不保证训练期间的加速。
⚠️ 当内存高效注意力和切片注意力都启用时,内存高效注意力优先。
示例
>>> import torch
>>> from diffusers import DiffusionPipeline
>>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp
>>> pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16)
>>> pipe = pipe.to("cuda")
>>> pipe.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
>>> # Workaround for not accepting attention shape using VAE for Flash Attention
>>> pipe.vae.enable_xformers_memory_efficient_attention(attention_op=None)
禁用来自 xFormers 的内存高效注意力。
load_textual_inversion
< source >( pretrained_model_name_or_path: Union token: Union = None tokenizer: Optional = None text_encoder: Optional = None **kwargs )
参数
- pretrained_model_name_or_path (
str
或os.PathLike
或List[str or os.PathLike]
或Dict
或List[Dict]
) — 可以是以下其中一项或它们的列表:- 一个字符串,即 Hub 上托管的预训练模型的模型 ID(例如
sd-concepts-library/low-poly-hd-logos-icons
)。 - 目录的路径(例如
./my_text_inversion_directory/
),其中包含文本反演权重。 - 文件的路径(例如
./my_text_inversions.pt
),其中包含文本反演权重。 - torch 状态字典。
- 一个字符串,即 Hub 上托管的预训练模型的模型 ID(例如
- token (
str
或List[str]
, 可选) — 覆盖用于文本反演权重的令牌。 如果pretrained_model_name_or_path
是列表,则token
也必须是等长的列表。 - text_encoder (CLIPTextModel, 可选) — 冻结的文本编码器 (clip-vit-large-patch14)。 如果未指定,该函数将采用 self.tokenizer。
- tokenizer (CLIPTokenizer, 可选) — 用于标记文本的
CLIPTokenizer
。如果未指定,函数将使用 self.tokenizer。 - weight_name (
str
, 可选) — 自定义权重文件的名称。在以下情况下应使用此参数:- 保存的文本反演文件为 🤗 Diffusers 格式,但保存时使用了特定的权重名称,例如
text_inv.bin
。 - 保存的文本反演文件为 Automatic1111 格式。
- 保存的文本反演文件为 🤗 Diffusers 格式,但保存时使用了特定的权重名称,例如
- cache_dir (
Union[str, os.PathLike]
, 可选) — 如果未使用标准缓存,则用于缓存下载的预训练模型配置的目录路径。 - force_download (
bool
, 可选, 默认为False
) — 是否强制(重新)下载模型权重和配置文件,覆盖已缓存的版本(如果存在)。 - proxies (
Dict[str, str]
, 可选) — 按协议或端点使用的代理服务器字典,例如,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}
。代理用于每个请求。 - local_files_only (
bool
, 可选, 默认为False
) — 是否仅加载本地模型权重和配置文件。如果设置为True
,则不会从 Hub 下载模型。 - token (
str
或 bool, 可选) — 用作远程文件的 HTTP Bearer 授权的令牌。如果为True
,则使用从diffusers-cli login
生成的令牌(存储在~/.huggingface
中)。 - revision (
str
, 可选, 默认为"main"
) — 要使用的特定模型版本。它可以是分支名称、标签名称、提交 ID 或 Git 允许的任何标识符。 - subfolder (
str
, 可选, 默认为""
) — Hub 或本地的较大模型存储库中模型文件的子文件夹位置。 - mirror (
str
, 可选) — 镜像源,用于解决在中国下载模型时的可访问性问题。我们不保证来源的及时性或安全性,您应参考镜像站点以获取更多信息。
将文本反演 (Textual Inversion) 嵌入加载到 StableDiffusionPipeline 的文本编码器中(支持 🤗 Diffusers 和 Automatic1111 格式)。
示例
加载 🤗 Diffusers 格式的文本反演嵌入向量:
from diffusers import StableDiffusionPipeline
import torch
model_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
pipe.load_textual_inversion("sd-concepts-library/cat-toy")
prompt = "A <cat-toy> backpack"
image = pipe(prompt, num_inference_steps=50).images[0]
image.save("cat-backpack.png")
要加载 Automatic1111 格式的文本反演嵌入向量,请确保先下载向量(例如从 civitAI),然后加载向量
本地:
from diffusers import StableDiffusionPipeline
import torch
model_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
pipe.load_textual_inversion("./charturnerv2.pt", token="charturnerv2")
prompt = "charturnerv2, multiple views of the same character in the same outfit, a character turnaround of a woman wearing a black jacket and red shirt, best quality, intricate details."
image = pipe(prompt, num_inference_steps=50).images[0]
image.save("character.png")
encode_prompt
< source >( prompt device num_images_per_prompt do_classifier_free_guidance negative_prompt = None prompt_embeds: Optional = None negative_prompt_embeds: Optional = None lora_scale: Optional = None clip_skip: Optional = None )
参数
- prompt (
str
或List[str]
, 可选) — 要编码的 prompt 设备 — (torch.device
): torch 设备 - num_images_per_prompt (
int
) — 每个 prompt 应生成的图像数量 - do_classifier_free_guidance (
bool
) — 是否使用无分类器引导 - negative_prompt (
str
或List[str]
, 可选) — 不用于引导图像生成的 prompt 或 prompts。如果未定义,则必须传递negative_prompt_embeds
。当不使用引导时忽略(即,如果guidance_scale
小于1
则忽略)。 - prompt_embeds (
torch.Tensor
, 可选) — 预生成的文本嵌入。可用于轻松调整文本输入,例如 prompt 权重。如果未提供,则将从prompt
输入参数生成文本嵌入。 - negative_prompt_embeds (
torch.Tensor
, 可选) — 预生成的负面文本嵌入。可用于轻松调整文本输入,例如 prompt 权重。如果未提供,则将从negative_prompt
输入参数生成 negative_prompt_embeds。 - lora_scale (
float
, 可选) — 如果加载了 LoRA 层,则将应用于文本编码器的所有 LoRA 层的 LoRA 缩放比例。 - clip_skip (
int
, 可选) — 从 CLIP 中跳过的层数,用于计算 prompt 嵌入。值为 1 表示预最终层的输出将用于计算 prompt 嵌入。
将 prompt 编码为文本编码器隐藏状态。
StableDiffusionControlNetInpaintPipeline
class diffusers.StableDiffusionControlNetInpaintPipeline
< source >( vae: AutoencoderKL text_encoder: CLIPTextModel tokenizer: CLIPTokenizer unet: UNet2DConditionModel controlnet: Union scheduler: KarrasDiffusionSchedulers safety_checker: StableDiffusionSafetyChecker feature_extractor: CLIPImageProcessor image_encoder: CLIPVisionModelWithProjection = None requires_safety_checker: bool = True )
参数
- vae (AutoencoderKL) — 变分自动编码器 (VAE) 模型,用于将图像编码和解码为潜在表示和从潜在表示解码图像。
- text_encoder (CLIPTextModel) — 冻结的文本编码器 (clip-vit-large-patch14)。
- tokenizer (CLIPTokenizer) — 用于标记文本的
CLIPTokenizer
。 - unet (UNet2DConditionModel) —
UNet2DConditionModel
,用于对编码后的图像潜在空间进行去噪。 - controlnet (ControlNetModel 或
List[ControlNetModel]
) — 在去噪过程中为unet
提供额外的条件。如果将多个 ControlNet 设置为列表,则每个 ControlNet 的输出将加在一起,以创建一个组合的附加条件。 - scheduler (SchedulerMixin) — 调度器,与
unet
结合使用以对编码后的图像潜在空间进行去噪。可以是 DDIMScheduler、 LMSDiscreteScheduler 或 PNDMScheduler 之一。 - safety_checker (
StableDiffusionSafetyChecker
) — 分类模块,用于估计生成的图像是否可能被认为具有攻击性或有害。有关模型潜在危害的更多详细信息,请参阅模型卡。 - feature_extractor (CLIPImageProcessor) — 用于从生成的图像中提取特征的
CLIPImageProcessor
;用作safety_checker
的输入。
使用 Stable Diffusion 和 ControlNet 指导的图像修复管线。
此模型继承自 DiffusionPipeline。查看超类文档,了解为所有管线实现的通用方法(下载、保存、在特定设备上运行等)。
该管线还继承了以下加载方法
- load_textual_inversion() 用于加载文本反演嵌入
- load_lora_weights() 用于加载 LoRA 权重
- save_lora_weights() 用于保存 LoRA 权重
- from_single_file() 用于加载
.ckpt
文件 - load_ip_adapter() 用于加载 IP 适配器
此管线可以与专门为图像修复微调的检查点 (runwayml/stable-diffusion-inpainting) 以及默认的文本到图像 Stable Diffusion 检查点 (runwayml/stable-diffusion-v1-5) 一起使用。对于在这些检查点上微调的 ControlNet,例如 lllyasviel/control_v11p_sd15_inpaint,默认的文本到图像 Stable Diffusion 检查点可能是更优的选择。
__call__
< source >( prompt: Union = None image: Union = None mask_image: Union = None control_image: Union = None height: Optional = None width: Optional = None padding_mask_crop: Optional = None strength: float = 1.0 num_inference_steps: int = 50 guidance_scale: float = 7.5 negative_prompt: Union = None num_images_per_prompt: Optional = 1 eta: float = 0.0 generator: Union = None latents: Optional = None prompt_embeds: Optional = None negative_prompt_embeds: Optional = None ip_adapter_image: Union = None ip_adapter_image_embeds: Optional = None output_type: Optional = 'pil' return_dict: bool = True cross_attention_kwargs: Optional = None controlnet_conditioning_scale: Union = 0.5 guess_mode: bool = False control_guidance_start: Union = 0.0 control_guidance_end: Union = 1.0 clip_skip: Optional = None callback_on_step_end: Union = None callback_on_step_end_tensor_inputs: List = ['latents'] **kwargs ) → StableDiffusionPipelineOutput or tuple
参数
- prompt (
str
或List[str]
, 可选) — 用于引导图像生成的提示或提示列表。如果未定义,则需要传递prompt_embeds
。 - image (
torch.Tensor
,PIL.Image.Image
,np.ndarray
,List[torch.Tensor]
, —List[PIL.Image.Image]
, 或List[np.ndarray]
):Image
,NumPy 数组或张量,表示要用作起点的图像批次。对于 NumPy 数组和 PyTorch 张量,预期值范围在[0, 1]
之间。如果是张量或张量列表,则预期形状应为(B, C, H, W)
或(C, H, W)
。如果是 NumPy 数组或数组列表,则预期形状应为(B, H, W, C)
或(H, W, C)
。它也可以接受图像潜在表示作为image
,但如果直接传递潜在表示,则不会再次编码。 - mask_image (
torch.Tensor
,PIL.Image.Image
,np.ndarray
,List[torch.Tensor]
, —List[PIL.Image.Image]
, 或List[np.ndarray]
):Image
,NumPy 数组或张量,表示要遮罩image
的图像批次。蒙版中的白色像素会被重新绘制,而黑色像素则会被保留。如果mask_image
是 PIL 图像,则在使用前会将其转换为单通道(亮度)。如果它是 NumPy 数组或 PyTorch 张量,则应包含一个颜色通道 (L) 而不是 3 个,因此 PyTorch 张量的预期形状为(B, 1, H, W)
、(B, H, W)
、(1, H, W)
、(H, W)
。对于 NumPy 数组,其形状应为(B, H, W, 1)
、(B, H, W)
、(H, W, 1)
或(H, W)
。 - control_image (
torch.Tensor
,PIL.Image.Image
,List[torch.Tensor]
,List[PIL.Image.Image]
, —List[List[torch.Tensor]]
, 或List[List[PIL.Image.Image]]
): ControlNet 输入条件,为unet
的生成提供指导。如果类型指定为torch.Tensor
,则按原样传递给 ControlNet。PIL.Image.Image
也可以接受作为图像。输出图像的尺寸默认为image
的尺寸。如果传递了 height 和/或 width,则会相应地调整image
的大小。如果在init
中指定了多个 ControlNet,则必须将图像作为列表传递,以便可以正确地批量处理列表中的每个元素,以输入到单个 ControlNet。 - height (
int
, 可选, 默认为self.unet.config.sample_size * self.vae_scale_factor
) — 生成图像的高度像素值。 - width (
int
, 可选, 默认为self.unet.config.sample_size * self.vae_scale_factor
) — 生成图像的宽度像素值。 - padding_mask_crop (
int
, 可选, 默认为None
) — 要应用于图像和蒙版裁剪的边距大小。如果为None
,则不会对图像和 mask_image 应用裁剪。如果padding_mask_crop
不为None
,它将首先找到一个矩形区域,该区域与图像具有相同的纵横比并包含所有蒙版区域,然后基于padding_mask_crop
扩展该区域。然后,图像和 mask_image 将基于扩展区域进行裁剪,然后再调整大小为原始图像大小以进行修复。当蒙版区域很小而图像很大且包含与修复无关的信息(例如背景)时,这非常有用。 - strength (
float
, 可选, 默认为 1.0) — 指示转换参考image
的程度。必须介于 0 和 1 之间。image
用作起点,strength
越高,添加的噪声就越多。去噪步骤的数量取决于最初添加的噪声量。当strength
为 1 时,添加的噪声最大,并且去噪过程运行完整的迭代次数,如num_inference_steps
中指定的那样。值为 1 本质上会忽略image
。 - num_inference_steps (
int
, 可选, 默认为 50) — 去噪步骤的数量。更多的去噪步骤通常会产生更高质量的图像,但代价是推理速度较慢。 - guidance_scale (
float
, 可选, 默认为 7.5) — 较高的 guidance scale 值会鼓励模型生成与文本prompt
紧密相关的图像,但会降低图像质量。当guidance_scale > 1
时,guidance scale 启用。 - negative_prompt (
str
或List[str]
, 可选) — 用于引导图像生成中不应包含的内容的提示或提示列表。如果未定义,则需要传递negative_prompt_embeds
代替。当不使用 guidance 时(guidance_scale < 1
),将被忽略。 - num_images_per_prompt (
int
, 可选, 默认为 1) — 每个提示要生成的图像数量。 - eta (
float
, 可选, 默认为 0.0) — 对应于 DDIM 论文中的参数 eta (η)。仅适用于 DDIMScheduler,在其他调度器中将被忽略。 - generator (
torch.Generator
或List[torch.Generator]
, 可选) — 用于使生成确定性的torch.Generator
。 - latents (
torch.Tensor
, 可选) — 从高斯分布中采样的预生成噪声潜在表示,用作图像生成的输入。可用于使用不同的提示调整相同的生成。如果未提供,则会通过使用提供的随机generator
进行采样来生成潜在张量。 - prompt_embeds (
torch.Tensor
, 可选) — 预生成的文本嵌入。可用于轻松调整文本输入(提示权重)。如果未提供,则会从prompt
输入参数生成文本嵌入。 - negative_prompt_embeds (
torch.Tensor
, 可选) — 预生成的负面文本嵌入。可用于轻松调整文本输入(提示权重)。如果未提供,则会从negative_prompt
输入参数生成negative_prompt_embeds
。ip_adapter_image — (PipelineImageInput
, 可选): 与 IP 适配器一起使用的可选图像输入。 - ip_adapter_image_embeds (
List[torch.Tensor]
, 可选) — IP-Adapter 的预生成图像嵌入。它应该是一个列表,其长度与 IP 适配器的数量相同。每个元素都应该是一个形状为(batch_size, num_images, emb_dim)
的张量。如果do_classifier_free_guidance
设置为True
,则应包含负图像嵌入。如果未提供,则从ip_adapter_image
输入参数计算嵌入。 - output_type (
str
, 可选, 默认为"pil"
) — 生成图像的输出格式。在PIL.Image
或np.array
之间选择。 - return_dict (
bool
, 可选, 默认为True
) — 是否返回 StableDiffusionPipelineOutput 而不是一个普通的元组。 - cross_attention_kwargs (
dict
, 可选) — 一个 kwargs 字典,如果指定,则会传递给self.processor
中定义的AttentionProcessor
。 - controlnet_conditioning_scale (
float
或List[float]
, 可选, 默认为 0.5) — ControlNet 的输出在添加到原始unet
中的残差之前,会乘以controlnet_conditioning_scale
。 如果在init
中指定了多个 ControlNet,则可以将相应的比例设置为列表。 - guess_mode (
bool
, 可选, 默认为False
) — 即使您删除所有提示,ControlNet 编码器也会尝试识别输入图像的内容。 建议guidance_scale
值在 3.0 到 5.0 之间。 - control_guidance_start (
float
或List[float]
, 可选, 默认为 0.0) — ControlNet 开始应用的总步数的百分比。 - control_guidance_end (
float
或List[float]
, 可选, 默认为 1.0) — ControlNet 停止应用的总步数的百分比。 - clip_skip (
int
, 可选) — 从 CLIP 跳过的层数,以计算提示嵌入。 值为 1 表示预倒数第二层的输出将用于计算提示嵌入。 - callback_on_step_end (
Callable
,PipelineCallback
,MultiPipelineCallbacks
, 可选) — 在推理期间的每个去噪步骤结束时调用的函数或PipelineCallback
或MultiPipelineCallbacks
的子类。 具有以下参数:callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)
。callback_kwargs
将包含callback_on_step_end_tensor_inputs
指定的所有张量列表。 - callback_on_step_end_tensor_inputs (
List
, 可选) —callback_on_step_end
函数的张量输入列表。 列表中指定的张量将作为callback_kwargs
参数传递。 您只能包含管道类的._callback_tensor_inputs
属性中列出的变量。
返回值
StableDiffusionPipelineOutput 或 tuple
如果 return_dict
为 True
,则返回 StableDiffusionPipelineOutput,否则返回 tuple
,其中第一个元素是包含生成图像的列表,第二个元素是 bool
列表,指示相应的生成图像是否包含“不适合工作场所观看”(nsfw)的内容。
用于生成管道的调用函数。
示例
>>> # !pip install transformers accelerate
>>> from diffusers import StableDiffusionControlNetInpaintPipeline, ControlNetModel, DDIMScheduler
>>> from diffusers.utils import load_image
>>> import numpy as np
>>> import torch
>>> init_image = load_image(
... "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy.png"
... )
>>> init_image = init_image.resize((512, 512))
>>> generator = torch.Generator(device="cpu").manual_seed(1)
>>> mask_image = load_image(
... "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy_mask.png"
... )
>>> mask_image = mask_image.resize((512, 512))
>>> def make_canny_condition(image):
... image = np.array(image)
... image = cv2.Canny(image, 100, 200)
... image = image[:, :, None]
... image = np.concatenate([image, image, image], axis=2)
... image = Image.fromarray(image)
... return image
>>> control_image = make_canny_condition(init_image)
>>> controlnet = ControlNetModel.from_pretrained(
... "lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16
... )
>>> pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
... )
>>> pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
>>> pipe.enable_model_cpu_offload()
>>> # generate image
>>> image = pipe(
... "a handsome man with ray-ban sunglasses",
... num_inference_steps=20,
... generator=generator,
... eta=1.0,
... image=init_image,
... mask_image=mask_image,
... control_image=control_image,
... ).images[0]
enable_attention_slicing
< source >( slice_size: Union = 'auto' )
启用切片注意力计算。启用此选项后,注意力模块会将输入张量分割成切片,以分步计算注意力。对于多个注意力头,计算将按顺序对每个头执行。这有助于节省一些内存,以换取速度的少量降低。
⚠️ 如果您已经在使用 PyTorch 2.0 或 xFormers 的 scaled_dot_product_attention
(SDPA),请不要启用注意力切片。这些注意力计算已经非常节省内存,因此您不需要启用此功能。如果您在 SDPA 或 xFormers 的情况下启用注意力切片,可能会导致严重的速度下降!
示例
>>> import torch
>>> from diffusers import StableDiffusionPipeline
>>> pipe = StableDiffusionPipeline.from_pretrained(
... "runwayml/stable-diffusion-v1-5",
... torch_dtype=torch.float16,
... use_safetensors=True,
... )
>>> prompt = "a photo of an astronaut riding a horse on mars"
>>> pipe.enable_attention_slicing()
>>> image = pipe(prompt).images[0]
禁用切片注意力计算。如果之前调用了 enable_attention_slicing
,则注意力将在一个步骤中计算。
启用切片 VAE 解码。启用此选项后,VAE 将把输入张量分割成切片,以分步计算解码。这有助于节省一些内存并允许更大的批量大小。
禁用切片 VAE 解码。如果之前启用了 enable_vae_slicing
,此方法将恢复为一个步骤计算解码。
enable_xformers_memory_efficient_attention
< source >( attention_op: Optional = None )
参数
- attention_op (
Callable
, 可选) — 覆盖默认的None
运算符,用作 xFormers 的memory_efficient_attention()
函数的op
参数。
启用来自 xFormers 的内存高效注意力。启用此选项后,您应该观察到 GPU 内存使用率降低,并且推理期间可能会加速。不保证训练期间的加速。
⚠️ 当内存高效注意力和切片注意力都启用时,内存高效注意力优先。
示例
>>> import torch
>>> from diffusers import DiffusionPipeline
>>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp
>>> pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16)
>>> pipe = pipe.to("cuda")
>>> pipe.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
>>> # Workaround for not accepting attention shape using VAE for Flash Attention
>>> pipe.vae.enable_xformers_memory_efficient_attention(attention_op=None)
禁用来自 xFormers 的内存高效注意力。
load_textual_inversion
< source >( pretrained_model_name_or_path: Union token: Union = None tokenizer: Optional = None text_encoder: Optional = None **kwargs )
参数
- pretrained_model_name_or_path (
str
或os.PathLike
或List[str or os.PathLike]
或Dict
或List[Dict]
) — 可以是以下其中一项或它们的列表:- 字符串,Hub 上托管的预训练模型的模型 ID(例如
sd-concepts-library/low-poly-hd-logos-icons
)。 - 目录的路径(例如
./my_text_inversion_directory/
),其中包含文本反演权重。 - 文件的路径(例如
./my_text_inversions.pt
),其中包含文本反演权重。 - torch 状态字典。
- 字符串,Hub 上托管的预训练模型的模型 ID(例如
- token (
str
或List[str]
, 可选) — 覆盖用于文本反演权重的 token。 如果pretrained_model_name_or_path
是列表,则token
也必须是等长的列表。 - text_encoder (CLIPTextModel, 可选) — 冻结的文本编码器 (clip-vit-large-patch14)。 如果未指定,函数将采用 self.tokenizer。
- tokenizer (CLIPTokenizer, 可选) — 用于标记文本的
CLIPTokenizer
。 如果未指定,函数将采用 self.tokenizer。 - weight_name (
str
, 可选) — 自定义权重文件的名称。 这应该在以下情况下使用:- 保存的文本反演文件是 🤗 Diffusers 格式,但以特定权重名称(例如
text_inv.bin
)保存。 - 保存的文本反演文件是 Automatic1111 格式。
- 保存的文本反演文件是 🤗 Diffusers 格式,但以特定权重名称(例如
- cache_dir (
Union[str, os.PathLike]
, 可选) — 如果不使用标准缓存,则下载的预训练模型配置缓存到的目录的路径。 - force_download (
bool
, 可选, 默认为False
) — 是否强制(重新)下载模型权重和配置文件,覆盖缓存版本(如果存在)。 - proxies (
Dict[str, str]
, 可选) — 要按协议或端点使用的代理服务器字典,例如,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}
。 代理用于每个请求。 - local_files_only (
bool
, 可选, 默认为False
) — 是否仅加载本地模型权重和配置文件。 如果设置为True
,则不会从 Hub 下载模型。 - token (
str
或bool
, 可选) — 用作远程文件 HTTP Bearer 授权的令牌。 如果为True
,则使用从diffusers-cli login
生成的令牌(存储在~/.huggingface
中)。 - revision (
str
, 可选, 默认为"main"
) — 要使用的特定模型版本。 它可以是分支名称、标签名称、提交 ID 或 Git 允许的任何标识符。 - subfolder (
str
, 可选, 默认为""
) — Hub 或本地的较大模型仓库中模型文件的子文件夹位置。 - mirror (
str
, 可选) — 如果您在中国下载模型时遇到可访问性问题,可以使用镜像源来解决。我们不保证来源的及时性或安全性,您应参考镜像站点以获取更多信息。
将文本反演 (Textual Inversion) 嵌入加载到 StableDiffusionPipeline 的文本编码器中(支持 🤗 Diffusers 和 Automatic1111 格式)。
示例
加载 🤗 Diffusers 格式的文本反演嵌入向量:
from diffusers import StableDiffusionPipeline
import torch
model_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
pipe.load_textual_inversion("sd-concepts-library/cat-toy")
prompt = "A <cat-toy> backpack"
image = pipe(prompt, num_inference_steps=50).images[0]
image.save("cat-backpack.png")
要加载 Automatic1111 格式的文本反演嵌入向量,请确保先下载向量(例如从 civitAI),然后加载向量
本地:
from diffusers import StableDiffusionPipeline
import torch
model_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
pipe.load_textual_inversion("./charturnerv2.pt", token="charturnerv2")
prompt = "charturnerv2, multiple views of the same character in the same outfit, a character turnaround of a woman wearing a black jacket and red shirt, best quality, intricate details."
image = pipe(prompt, num_inference_steps=50).images[0]
image.save("character.png")
encode_prompt
< source >( prompt device num_images_per_prompt do_classifier_free_guidance negative_prompt = None prompt_embeds: Optional = None negative_prompt_embeds: Optional = None lora_scale: Optional = None clip_skip: Optional = None )
参数
- prompt (
str
或List[str]
, 可选) — 要编码的 prompt。 device — (torch.device
): torch 设备 - num_images_per_prompt (
int
) — 每个 prompt 应生成的图像数量。 - do_classifier_free_guidance (
bool
) — 是否使用无分类器引导。 - negative_prompt (
str
或List[str]
, 可选) — 不用于引导图像生成的 prompt 或 prompts。如果未定义,则必须传递negative_prompt_embeds
。当不使用引导时忽略(即,如果guidance_scale
小于1
则忽略)。 - prompt_embeds (
torch.Tensor
, 可选) — 预生成的文本嵌入。可用于轻松调整文本输入,例如 prompt 权重。如果未提供,则将从prompt
输入参数生成文本嵌入。 - negative_prompt_embeds (
torch.Tensor
, 可选) — 预生成的负面文本嵌入。可用于轻松调整文本输入,例如 prompt 权重。如果未提供,则将从negative_prompt
输入参数生成 negative_prompt_embeds。 - lora_scale (
float
, 可选) — 如果加载了 LoRA 层,则将应用于文本编码器的所有 LoRA 层的 LoRA 缩放比例。 - clip_skip (
int
, 可选) — 从 CLIP 跳过的层数,用于计算 prompt 嵌入。值为 1 表示预最终层的输出将用于计算 prompt 嵌入。
将 prompt 编码为文本编码器隐藏状态。
StableDiffusionPipelineOutput
class diffusers.pipelines.stable_diffusion.StableDiffusionPipelineOutput
< source >( images: Union nsfw_content_detected: Optional )
Stable Diffusion 管道的输出类。
FlaxStableDiffusionControlNetPipeline
class diffusers.FlaxStableDiffusionControlNetPipeline
< source >( vae: FlaxAutoencoderKL text_encoder: FlaxCLIPTextModel tokenizer: CLIPTokenizer unet: FlaxUNet2DConditionModel controlnet: FlaxControlNetModel scheduler: Union safety_checker: FlaxStableDiffusionSafetyChecker feature_extractor: CLIPImageProcessor dtype: dtype = <class 'jax.numpy.float32'> )
参数
- vae (FlaxAutoencoderKL) — 变分自动编码器 (VAE) 模型,用于将图像编码和解码为潜在表示形式,以及从潜在表示形式解码为图像。
- text_encoder (FlaxCLIPTextModel) — 冻结的文本编码器 (clip-vit-large-patch14)。
- tokenizer (CLIPTokenizer) — 用于标记化文本的
CLIPTokenizer
。 - unet (FlaxUNet2DConditionModel) — 用于对编码后的图像潜在空间进行去噪的
FlaxUNet2DConditionModel
。 - controlnet (FlaxControlNetModel) — 在去噪过程中为
unet
提供额外的条件控制。 - scheduler (SchedulerMixin) — 调度器,与
unet
结合使用,以对编码后的图像潜在空间进行去噪。可以是FlaxDDIMScheduler
、FlaxLMSDiscreteScheduler
、FlaxPNDMScheduler
或FlaxDPMSolverMultistepScheduler
之一。 - safety_checker (
FlaxStableDiffusionSafetyChecker
) — 分类模块,用于估计生成的图像是否可能被认为具有攻击性或有害。有关模型潜在危害的更多详细信息,请参阅模型卡。 - feature_extractor (CLIPImageProcessor) —
CLIPImageProcessor
,用于从生成的图像中提取特征;用作safety_checker
的输入。
基于 Flax 的管道,用于使用带有 ControlNet Guidance 的 Stable Diffusion 进行文本到图像的生成。
此模型继承自 FlaxDiffusionPipeline。查看超类文档,了解为所有管道实现的通用方法(下载、保存、在特定设备上运行等)。
__call__
< source >( prompt_ids: Array image: Array params: Union prng_seed: Array num_inference_steps: int = 50 guidance_scale: Union = 7.5 latents: Array = None neg_prompt_ids: Array = None controlnet_conditioning_scale: Union = 1.0 return_dict: bool = True jit: bool = False ) → FlaxStableDiffusionPipelineOutput 或 tuple
参数
- prompt_ids (
jnp.ndarray
) — 用于引导图像生成的 prompt 或 prompts。 - image (
jnp.ndarray
) — 表示 ControlNet 输入条件的数组,用于为unet
的生成提供指导。 - params (
Dict
或FrozenDict
) — 包含模型参数/权重的字典。 - prng_seed (
jax.Array
) — 包含随机数生成器密钥的数组。 - num_inference_steps (
int
, 可选, 默认为 50) — 去噪步骤的数量。 更多的去噪步骤通常会带来更高质量的图像,但会牺牲推理速度。 - guidance_scale (
float
, 可选, 默认为 7.5) — 更高的 guidance scale 值会鼓励模型生成与文本prompt
紧密相关的图像,但这会以降低图像质量为代价。 当guidance_scale > 1
时,Guidance scale 启用。 - latents (
jnp.ndarray
, 可选) — 预生成的噪声潜变量,从高斯分布中采样,用作图像生成的输入。 可以用于通过不同的 prompt 微调相同的生成结果。 如果未提供,则会使用提供的随机generator
采样生成一个 latents 数组。 - controlnet_conditioning_scale (
float
或jnp.ndarray
, 可选, 默认为 1.0) — ControlNet 的输出在添加到原始unet
中的残差之前,会乘以controlnet_conditioning_scale
。 - return_dict (
bool
, 可选, 默认为True
) — 是否返回 FlaxStableDiffusionPipelineOutput 而不是普通的元组。 - jit (
bool
, 默认为False
) — 是否运行生成和安全评分函数的pmap
版本。此参数的存在是因为
__call__
尚未实现端到端 pmap 化。 它将在未来的版本中移除。
返回值
FlaxStableDiffusionPipelineOutput or tuple
如果 return_dict
为 True
,则返回 FlaxStableDiffusionPipelineOutput,否则返回一个 tuple
,其中第一个元素是包含生成图像的列表,第二个元素是 bool
类型的列表,指示相应的生成图像是否包含“不适合工作场所观看”(nsfw)内容。
用于生成管道的调用函数。
示例
>>> import jax
>>> import numpy as np
>>> import jax.numpy as jnp
>>> from flax.jax_utils import replicate
>>> from flax.training.common_utils import shard
>>> from diffusers.utils import load_image, make_image_grid
>>> from PIL import Image
>>> from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel
>>> def create_key(seed=0):
... return jax.random.PRNGKey(seed)
>>> rng = create_key(0)
>>> # get canny image
>>> canny_image = load_image(
... "https://huggingface.co/datasets/YiYiXu/test-doc-assets/resolve/main/blog_post_cell_10_output_0.jpeg"
... )
>>> prompts = "best quality, extremely detailed"
>>> negative_prompts = "monochrome, lowres, bad anatomy, worst quality, low quality"
>>> # load control net and stable diffusion v1-5
>>> controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
... "lllyasviel/sd-controlnet-canny", from_pt=True, dtype=jnp.float32
... )
>>> pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.float32
... )
>>> params["controlnet"] = controlnet_params
>>> num_samples = jax.device_count()
>>> rng = jax.random.split(rng, jax.device_count())
>>> prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples)
>>> negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples)
>>> processed_image = pipe.prepare_image_inputs([canny_image] * num_samples)
>>> p_params = replicate(params)
>>> prompt_ids = shard(prompt_ids)
>>> negative_prompt_ids = shard(negative_prompt_ids)
>>> processed_image = shard(processed_image)
>>> output = pipe(
... prompt_ids=prompt_ids,
... image=processed_image,
... params=p_params,
... prng_seed=rng,
... num_inference_steps=50,
... neg_prompt_ids=negative_prompt_ids,
... jit=True,
... ).images
>>> output_images = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:])))
>>> output_images = make_image_grid(output_images, num_samples // 4, 4)
>>> output_images.save("generated_image.png")
FlaxStableDiffusionControlNetPipelineOutput
class diffusers.pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput
< source >( images: ndarray nsfw_content_detected: List )
基于 Flax 的 Stable Diffusion 管道的输出类。
“返回一个新对象,将指定的字段替换为新值。