timm 文档

DenseNet

Hugging Face's logo
加入 Hugging Face 社区

并获得增强文档体验的访问权限

开始

DenseNet

DenseNet 是一种卷积神经网络,它利用层之间密集的连接,通过 密集块,我们在其中将所有层(具有匹配的特征图大小)直接相互连接。为了保持前馈性质,每一层从所有先前层获得额外的输入,并将自己的特征图传递给所有后续层。

此集合中的 DenseNet Blur 变体由 Ross Wightman 采用 模糊池化

如何在图像上使用此模型?

加载预训练模型

>>> import timm
>>> model = timm.create_model('densenet121', pretrained=True)
>>> model.eval()

加载和预处理图像

>>> import urllib
>>> from PIL import Image
>>> from timm.data import resolve_data_config
>>> from timm.data.transforms_factory import create_transform

>>> config = resolve_data_config({}, model=model)
>>> transform = create_transform(**config)

>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
>>> urllib.request.urlretrieve(url, filename)
>>> img = Image.open(filename).convert('RGB')
>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension

获取模型预测

>>> import torch
>>> with torch.no_grad():
...     out = model(tensor)
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
>>> print(probabilities.shape)
>>> # prints: torch.Size([1000])

获取前 5 个预测类别名称

>>> # Get imagenet class mappings
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
>>> urllib.request.urlretrieve(url, filename) 
>>> with open("imagenet_classes.txt", "r") as f:
...     categories = [s.strip() for s in f.readlines()]

>>> # Print top categories per image
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
>>> for i in range(top5_prob.size(0)):
...     print(categories[top5_catid[i]], top5_prob[i].item())
>>> # prints class names and probabilities like:
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]

将模型名称替换为要使用的变体,例如 densenet121。您可以在此页面顶部的模型摘要中找到 ID。

要使用此模型提取图像特征,请遵循 timm 特征提取示例,只需更改要使用的模型名称即可。

如何微调此模型?

您可以通过更改分类器(最后一层)来微调任何预训练模型。

>>> model = timm.create_model('densenet121', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)

要在自己的数据集上进行微调,您必须编写一个训练循环或调整 timm 的训练脚本 以使用您的数据集。

如何训练此模型?

您可以遵循 timm 食谱脚本 来从头开始训练新模型。

引用

@article{DBLP:journals/corr/HuangLW16a,
  author    = {Gao Huang and
               Zhuang Liu and
               Kilian Q. Weinberger},
  title     = {Densely Connected Convolutional Networks},
  journal   = {CoRR},
  volume    = {abs/1608.06993},
  year      = {2016},
  url       = {http://arxiv.org/abs/1608.06993},
  archivePrefix = {arXiv},
  eprint    = {1608.06993},
  timestamp = {Mon, 10 Sep 2018 15:49:32 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/HuangLW16a.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
}
< > 在 GitHub 上更新