timm 文档

双路径网络 (DPN)

Hugging Face's logo
加入 Hugging Face 社区

并获得增强的文档体验

开始使用

双路径网络 (DPN)

**双路径网络 (DPN)** 是一种卷积神经网络,其内部呈现了一种新的连接路径拓扑结构。直观上,ResNets 允许特征重新使用,而 DenseNet 允许探索新的特征,两者对于学习良好的表示都非常重要。为了从两种路径拓扑中获得优势,双路径网络共享通用特征,同时通过双路径架构保持探索新特征的灵活性。

其主要构建模块是 DPN 块

如何将此模型用于图像?

要加载预训练模型

>>> import timm
>>> model = timm.create_model('dpn107', pretrained=True)
>>> model.eval()

要加载和预处理图像

>>> import urllib
>>> from PIL import Image
>>> from timm.data import resolve_data_config
>>> from timm.data.transforms_factory import create_transform

>>> config = resolve_data_config({}, model=model)
>>> transform = create_transform(**config)

>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
>>> urllib.request.urlretrieve(url, filename)
>>> img = Image.open(filename).convert('RGB')
>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension

要获取模型预测

>>> import torch
>>> with torch.no_grad():
...     out = model(tensor)
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
>>> print(probabilities.shape)
>>> # prints: torch.Size([1000])

要获取前 5 个预测类名

>>> # Get imagenet class mappings
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
>>> urllib.request.urlretrieve(url, filename) 
>>> with open("imagenet_classes.txt", "r") as f:
...     categories = [s.strip() for s in f.readlines()]

>>> # Print top categories per image
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
>>> for i in range(top5_prob.size(0)):
...     print(categories[top5_catid[i]], top5_prob[i].item())
>>> # prints class names and probabilities like:
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]

将模型名称替换为要使用的变体,例如 dpn107。您可以在此页面顶部的模型摘要中找到 ID。

要使用此模型提取图像特征,请按照 timm 特征提取示例 操作,只需更改要使用的模型名称。

如何微调此模型?

您可以通过更改分类器(最后一层)来微调任何预训练模型。

>>> model = timm.create_model('dpn107', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)

要在自己的数据集上微调,您需要编写一个训练循环或调整 timm 的训练脚本 以使用您的数据集。

如何训练此模型?

您可以按照 timm 食谱脚本 训练一个全新的模型。

引用

@misc{chen2017dual,
      title={Dual Path Networks}, 
      author={Yunpeng Chen and Jianan Li and Huaxin Xiao and Xiaojie Jin and Shuicheng Yan and Jiashi Feng},
      year={2017},
      eprint={1707.01629},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
< > 在 GitHub 上更新