timm 文档
# 集成对抗性Inception ResNet v2
加入 Hugging Face 社区
并获得增强的文档体验
开始使用
# 集成对抗性Inception ResNet v2
Inception-ResNet-v2 是一种卷积神经网络架构,它建立在 Inception 系列架构之上,但加入了残差连接(取代了 Inception 架构的滤波器拼接阶段)。
该特定模型是为对抗性样本研究(对抗性训练)而训练的。
该模型的权重从 Tensorflow/Models 移植而来。
如何在图像上使用此模型?
加载预训练模型
>>> import timm
>>> model = timm.create_model('ens_adv_inception_resnet_v2', pretrained=True)
>>> model.eval()
加载并预处理图像
>>> import urllib
>>> from PIL import Image
>>> from timm.data import resolve_data_config
>>> from timm.data.transforms_factory import create_transform
>>> config = resolve_data_config({}, model=model)
>>> transform = create_transform(**config)
>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
>>> urllib.request.urlretrieve(url, filename)
>>> img = Image.open(filename).convert('RGB')
>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension
获取模型预测结果
>>> import torch
>>> with torch.inference_mode():
... out = model(tensor)
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
>>> print(probabilities.shape)
>>> # prints: torch.Size([1000])
获取排名前 5 的预测类别名称
>>> # Get imagenet class mappings
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
>>> urllib.request.urlretrieve(url, filename)
>>> with open("imagenet_classes.txt", "r") as f:
... categories = [s.strip() for s in f.readlines()]
>>> # Print top categories per image
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
>>> for i in range(top5_prob.size(0)):
... print(categories[top5_catid[i]], top5_prob[i].item())
>>> # prints class names and probabilities like:
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
将模型名称替换为您想使用的变体,例如 ens_adv_inception_resnet_v2
。您可以在本页顶部的模型摘要中找到 ID。
要使用此模型提取图像特征,请遵循 timm 特征提取示例,只需更改你想使用的模型名称。
如何微调此模型?
你可以通过更改分类器(最后一层)来微调任何预训练模型。
>>> model = timm.create_model('ens_adv_inception_resnet_v2', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
要在自己的数据集上进行微调,你需要编写一个训练循环或修改 timm 的训练脚本以使用你的数据集。
如何训练此模型?
你可以按照 timm 食谱脚本来重新训练一个新模型。
引用
@article{DBLP:journals/corr/abs-1804-00097,
author = {Alexey Kurakin and
Ian J. Goodfellow and
Samy Bengio and
Yinpeng Dong and
Fangzhou Liao and
Ming Liang and
Tianyu Pang and
Jun Zhu and
Xiaolin Hu and
Cihang Xie and
Jianyu Wang and
Zhishuai Zhang and
Zhou Ren and
Alan L. Yuille and
Sangxia Huang and
Yao Zhao and
Yuzhe Zhao and
Zhonglin Han and
Junjiajia Long and
Yerkebulan Berdibekov and
Takuya Akiba and
Seiya Tokui and
Motoki Abe},
title = {Adversarial Attacks and Defences Competition},
journal = {CoRR},
volume = {abs/1804.00097},
year = {2018},
url = {http://arxiv.org/abs/1804.00097},
archivePrefix = {arXiv},
eprint = {1804.00097},
timestamp = {Thu, 31 Oct 2019 16:31:22 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1804-00097.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}