timm 文档

HRNet

Hugging Face's logo
加入 Hugging Face 社区

并获得增强的文档体验

开始使用

HRNet

HRNet,或 High-Resolution Net,是一个通用的卷积神经网络,用于语义分割、物体检测和图像分类等任务。它能够在整个过程中保持高分辨率表示。我们从高分辨率卷积流开始,逐步添加从高到低分辨率的卷积流,并将多分辨率流并行连接。最终的网络由几个(论文中为 \( 4 \) 个)阶段组成,并且n n 阶段包含n n 对应于n n 分辨率的流。作者通过一遍又一遍地交换并行流之间的信息来进行重复的多分辨率融合。

如何在图像上使用此模型?

加载预训练模型

>>> import timm
>>> model = timm.create_model('hrnet_w18', pretrained=True)
>>> model.eval()

加载和预处理图像

>>> import urllib
>>> from PIL import Image
>>> from timm.data import resolve_data_config
>>> from timm.data.transforms_factory import create_transform

>>> config = resolve_data_config({}, model=model)
>>> transform = create_transform(**config)

>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
>>> urllib.request.urlretrieve(url, filename)
>>> img = Image.open(filename).convert('RGB')
>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension

获取模型预测

>>> import torch
>>> with torch.no_grad():
...     out = model(tensor)
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
>>> print(probabilities.shape)
>>> # prints: torch.Size([1000])

获取前 5 个预测类名

>>> # Get imagenet class mappings
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
>>> urllib.request.urlretrieve(url, filename)
>>> with open("imagenet_classes.txt", "r") as f:
...     categories = [s.strip() for s in f.readlines()]

>>> # Print top categories per image
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
>>> for i in range(top5_prob.size(0)):
...     print(categories[top5_catid[i]], top5_prob[i].item())
>>> # prints class names and probabilities like:
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]

将模型名称替换为您想要使用的变体,例如 hrnet_w18。您可以在此页面顶部的模型摘要中找到 ID。

要使用此模型提取图像特征,请按照 timm 特征提取示例,只需更改您要使用的模型的名称即可。

如何微调此模型?

您可以通过更改分类器(最后一层)来微调任何预训练模型。

>>> model = timm.create_model('hrnet_w18', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)

要在您自己的数据集上进行微调,您必须编写一个训练循环或调整 timm 的训练脚本 以使用您的数据集。

如何训练此模型?

您可以按照 timm 配方脚本 从头开始训练新模型。

引用

@misc{sun2019highresolution,
      title={High-Resolution Representations for Labeling Pixels and Regions},
      author={Ke Sun and Yang Zhao and Borui Jiang and Tianheng Cheng and Bin Xiao and Dong Liu and Yadong Mu and Xinggang Wang and Wenyu Liu and Jingdong Wang},
      year={2019},
      eprint={1904.04514},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
< > 在 GitHub 上更新