构建一个类别条件扩散模型
在本笔记本中,我们将说明向扩散模型添加条件信息的一种方法。具体来说,我们将根据 MNIST 训练一个类别条件扩散模型,该模型继 第一单元中的“从头开始”示例,我们可以指定在推理时希望模型生成的数字。
如本单元介绍中所述,这仅仅是向扩散模型添加额外条件信息的方法之一,并且因为它相对简单而被选中。与第一单元中的“从头开始”笔记本一样,这个笔记本主要用于说明目的,如果您愿意,您可以跳过它。
设置和数据准备
>>> %pip install -q diffusers
[K |████████████████████████████████| 503 kB 7.2 MB/s [K |████████████████████████████████| 182 kB 51.3 MB/s [?25h
>>> import torch
>>> import torchvision
>>> from torch import nn
>>> from torch.nn import functional as F
>>> from torch.utils.data import DataLoader
>>> from diffusers import DDPMScheduler, UNet2DModel
>>> from matplotlib import pyplot as plt
>>> from tqdm.auto import tqdm
>>> device = "mps" if torch.backends.mps.is_available() else "cuda" if torch.cuda.is_available() else "cpu"
>>> print(f"Using device: {device}")
Using device: cuda
>>> # Load the dataset
>>> dataset = torchvision.datasets.MNIST(
... root="mnist/", train=True, download=True, transform=torchvision.transforms.ToTensor()
... )
>>> # Feed it into a dataloader (batch size 8 here just for demo)
>>> train_dataloader = DataLoader(dataset, batch_size=8, shuffle=True)
>>> # View some examples
>>> x, y = next(iter(train_dataloader))
>>> print("Input shape:", x.shape)
>>> print("Labels:", y)
>>> plt.imshow(torchvision.utils.make_grid(x)[0], cmap="Greys")
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to mnist/MNIST/raw/train-images-idx3-ubyte.gz
创建类别条件 UNet
我们将以如下方式馈送类别条件
- 创建一个标准的
UNet2DModel
,并带有一些额外的输入通道 - 通过嵌入层将类别标签映射到形状为
(class_emb_size)
的学习向量 - 将此信息作为额外通道与内部 UNet 输入连接起来,使用
net_input = torch.cat((x, class_cond), 1)
- 将这个
net_input
(总共具有 (class_emb_size+1
) 个通道)馈送到 UNet 中以获得最终预测
在本示例中,我将 class_emb_size 设置为 4,但这完全是任意的,您可以探索将其大小设置为 1(看看它是否仍然有效)、大小设置为 10(与类别数量匹配)或用类别标签的简单独热编码直接替换学习的 nn.Embedding。
这就是实现方式
class ClassConditionedUnet(nn.Module):
def __init__(self, num_classes=10, class_emb_size=4):
super().__init__()
# The embedding layer will map the class label to a vector of size class_emb_size
self.class_emb = nn.Embedding(num_classes, class_emb_size)
# Self.model is an unconditional UNet with extra input channels to accept the conditioning information (the class embedding)
self.model = UNet2DModel(
sample_size=28, # the target image resolution
in_channels=1 + class_emb_size, # Additional input channels for class cond.
out_channels=1, # the number of output channels
layers_per_block=2, # how many ResNet layers to use per UNet block
block_out_channels=(32, 64, 64),
down_block_types=(
"DownBlock2D", # a regular ResNet downsampling block
"AttnDownBlock2D", # a ResNet downsampling block with spatial self-attention
"AttnDownBlock2D",
),
up_block_types=(
"AttnUpBlock2D",
"AttnUpBlock2D", # a ResNet upsampling block with spatial self-attention
"UpBlock2D", # a regular ResNet upsampling block
),
)
# Our forward method now takes the class labels as an additional argument
def forward(self, x, t, class_labels):
# Shape of x:
bs, ch, w, h = x.shape
# class conditioning in right shape to add as additional input channels
class_cond = self.class_emb(class_labels) # Map to embedding dimension
class_cond = class_cond.view(bs, class_cond.shape[1], 1, 1).expand(bs, class_cond.shape[1], w, h)
# x is shape (bs, 1, 28, 28) and class_cond is now (bs, 4, 28, 28)
# Net input is now x and class cond concatenated together along dimension 1
net_input = torch.cat((x, class_cond), 1) # (bs, 5, 28, 28)
# Feed this to the UNet alongside the timestep and return the prediction
return self.model(net_input, t).sample # (bs, 1, 28, 28)
如果任何形状或变换令人困惑,请添加 print 语句以显示相关形状并检查它们是否符合您的预期。我还注释了一些中间变量的形状,希望能使事情更清晰。
训练和采样
以前我们会像 prediction = unet(x, t)
那样做,现在我们将正确的标签作为第三个参数添加(prediction = unet(x, t, y)
)进行训练,在推理时我们可以传递我们想要的任何标签,如果一切顺利,模型应该生成与之匹配的图像。 在这种情况下,y
是 MNIST 数字的标签,取值范围为 0 到 9。
训练循环与 第一单元中的示例 非常相似。我们现在预测噪声(而不是第一单元中对去噪图像的预测),以匹配我们用于在训练期间添加噪声和在推理时生成样本的默认 DDPMScheduler 所期望的目标。训练需要一段时间 - 加速训练可能是一个有趣的迷你项目,但你们中的大多数人可能只需浏览代码(实际上是整个笔记本)而不运行它,因为我们只是在说明一个想法。
# Create a scheduler
noise_scheduler = DDPMScheduler(num_train_timesteps=1000, beta_schedule="squaredcos_cap_v2")
>>> # @markdown Training loop (10 Epochs):
>>> # Redefining the dataloader to set the batch size higher than the demo of 8
>>> train_dataloader = DataLoader(dataset, batch_size=128, shuffle=True)
>>> # How many runs through the data should we do?
>>> n_epochs = 10
>>> # Our network
>>> net = ClassConditionedUnet().to(device)
>>> # Our loss function
>>> loss_fn = nn.MSELoss()
>>> # The optimizer
>>> opt = torch.optim.Adam(net.parameters(), lr=1e-3)
>>> # Keeping a record of the losses for later viewing
>>> losses = []
>>> # The training loop
>>> for epoch in range(n_epochs):
... for x, y in tqdm(train_dataloader):
... # Get some data and prepare the corrupted version
... x = x.to(device) * 2 - 1 # Data on the GPU (mapped to (-1, 1))
... y = y.to(device)
... noise = torch.randn_like(x)
... timesteps = torch.randint(0, 999, (x.shape[0],)).long().to(device)
... noisy_x = noise_scheduler.add_noise(x, noise, timesteps)
... # Get the model prediction
... pred = net(noisy_x, timesteps, y) # Note that we pass in the labels y
... # Calculate the loss
... loss = loss_fn(pred, noise) # How close is the output to the noise
... # Backprop and update the params:
... opt.zero_grad()
... loss.backward()
... opt.step()
... # Store the loss for later
... losses.append(loss.item())
... # Print out the average of the last 100 loss values to get an idea of progress:
... avg_loss = sum(losses[-100:]) / 100
... print(f"Finished epoch {epoch}. Average of the last 100 loss values: {avg_loss:05f}")
>>> # View the loss curve
>>> plt.plot(losses)
Finished epoch 0. Average of the last 100 loss values: 0.052451
训练完成后,我们可以采样一些图像,并将不同的标签作为条件馈送到模型中
>>> # @markdown Sampling some different digits:
>>> # Prepare random x to start from, plus some desired labels y
>>> x = torch.randn(80, 1, 28, 28).to(device)
>>> y = torch.tensor([[i] * 8 for i in range(10)]).flatten().to(device)
>>> # Sampling loop
>>> for i, t in tqdm(enumerate(noise_scheduler.timesteps)):
... # Get model pred
... with torch.no_grad():
... residual = net(x, t, y) # Again, note that we pass in our labels y
... # Update sample with step
... x = noise_scheduler.step(residual, t, x).prev_sample
>>> # Show the results
>>> fig, ax = plt.subplots(1, 1, figsize=(12, 12))
>>> ax.imshow(torchvision.utils.make_grid(x.detach().cpu().clip(-1, 1), nrow=8)[0], cmap="Greys")
好了!现在我们可以对生成哪些图像进行一定程度的控制。
希望您喜欢这个示例。和往常一样,请随时在 Discord 中提问。
# Exercise (optional): Try this with FashionMNIST. Tweak the learning rate, batch size and number of epochs.
# Can you get some decent-looking fashion images with less training time than the example above?