Diffusers 文档
FluxTransformer2D模型
并获取增强的文档体验
开始使用
FluxTransformer2DModel
一个来自 Flux 的用于类图像数据的 Transformer 模型。
FluxTransformer2DModel
class diffusers.FluxTransformer2DModel
< source >( patch_size: int = 1 in_channels: int = 64 out_channels: typing.Optional[int] = None num_layers: int = 19 num_single_layers: int = 38 attention_head_dim: int = 128 num_attention_heads: int = 24 joint_attention_dim: int = 4096 pooled_projection_dim: int = 768 guidance_embeds: bool = False axes_dims_rope: typing.Tuple[int] = (16, 56, 56) )
参数
- patch_size (
int
) — 将输入数据转换为小块的块大小。 - in_channels (
int
, 可选, 默认为 16) — 输入中的通道数。 - num_layers (
int
, 可选, 默认为 18) — 要使用的 MMDiT 块的层数。 - num_single_layers (
int
, 可选, 默认为 18) — 要使用的单 DiT 块的层数。 - attention_head_dim (
int
, 可选, 默认为 64) — 每个头部的通道数。 - num_attention_heads (
int
, 可选, 默认为 18) — 用于多头注意力机制的头的数量。 - joint_attention_dim (
int
, 可选) — 要使用的encoder_hidden_states
维度数量。 - pooled_projection_dim (
int
) — 当投影pooled_projections
时使用的维度数量。 - guidance_embeds (
bool
, 默认为 False) — 是否使用引导嵌入。
Flux 中引入的 Transformer 模型。
参考链接: https://blackforestlabs.ai/announcing-black-forest-labs/
forward
< source >( hidden_states: Tensor encoder_hidden_states: Tensor = None pooled_projections: Tensor = None timestep: LongTensor = None img_ids: Tensor = None txt_ids: Tensor = None guidance: Tensor = None joint_attention_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None controlnet_block_samples = None controlnet_single_block_samples = None return_dict: bool = True controlnet_blocks_repeat: bool = False )
参数
- hidden_states (
torch.FloatTensor
,形状为(batch size, channel, height, width)
) — 输入的hidden_states
。 - encoder_hidden_states (
torch.FloatTensor
,形状为(batch size, sequence_len, embed_dims)
) — 条件嵌入(从输入条件(如提示词)计算出的嵌入)以供使用。 - pooled_projections (
torch.FloatTensor
,形状为(batch_size, projection_dim)
) — 从输入条件的嵌入投影而来的嵌入。 - timestep (
torch.LongTensor
) — 用于指示去噪步骤。 - block_controlnet_hidden_states — (
torch.Tensor
的list
): 一个张量列表,如果指定,则添加到 transformer 块的残差中。 - joint_attention_kwargs (
dict
, 可选) — 一个 kwargs 字典,如果指定,则作为self.processor
在 diffusers.models.attention_processor 中定义的AttentionProcessor
传递。 - return_dict (
bool
, 可选, 默认为True
) — 是否返回~models.transformer_2d.Transformer2DModelOutput
而不是普通的元组。
FluxTransformer2DModel 的 forward 方法。
启用融合的 QKV 投影。对于自注意力模块,所有投影矩阵(即,查询、键、值)都被融合。对于交叉注意力模块,键和值投影矩阵被融合。
此 API 为 🧪 实验性。
set_attn_processor
< source >( processor: typing.Union[diffusers.models.attention_processor.AttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor2_0, diffusers.models.attention_processor.JointAttnProcessor2_0, diffusers.models.attention_processor.PAGJointAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGJointAttnProcessor2_0, diffusers.models.attention_processor.FusedJointAttnProcessor2_0, diffusers.models.attention_processor.AllegroAttnProcessor2_0, diffusers.models.attention_processor.AuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FusedAuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.CogVideoXAttnProcessor2_0, diffusers.models.attention_processor.FusedCogVideoXAttnProcessor2_0, diffusers.models.attention_processor.XFormersAttnAddedKVProcessor, diffusers.models.attention_processor.XFormersAttnProcessor, diffusers.models.attention_processor.XLAFlashAttnProcessor2_0, diffusers.models.attention_processor.AttnProcessorNPU, diffusers.models.attention_processor.AttnProcessor2_0, diffusers.models.attention_processor.MochiVaeAttnProcessor2_0, diffusers.models.attention_processor.MochiAttnProcessor2_0, diffusers.models.attention_processor.StableAudioAttnProcessor2_0, diffusers.models.attention_processor.HunyuanAttnProcessor2_0, diffusers.models.attention_processor.FusedHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.LuminaAttnProcessor2_0, diffusers.models.attention_processor.FusedAttnProcessor2_0, diffusers.models.attention_processor.CustomDiffusionXFormersAttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor2_0, diffusers.models.attention_processor.SlicedAttnProcessor, diffusers.models.attention_processor.SlicedAttnAddedKVProcessor, diffusers.models.attention_processor.SanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGSanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySanaLinearAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleLinearAttention, diffusers.models.attention_processor.SanaMultiscaleAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleAttentionProjection, diffusers.models.attention_processor.IPAdapterAttnProcessor, diffusers.models.attention_processor.IPAdapterAttnProcessor2_0, diffusers.models.attention_processor.IPAdapterXFormersAttnProcessor, diffusers.models.attention_processor.SD3IPAdapterJointAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.LoRAAttnProcessor, diffusers.models.attention_processor.LoRAAttnProcessor2_0, diffusers.models.attention_processor.LoRAXFormersAttnProcessor, diffusers.models.attention_processor.LoRAAttnAddedKVProcessor, typing.Dict[str, typing.Union[diffusers.models.attention_processor.AttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor2_0, diffusers.models.attention_processor.JointAttnProcessor2_0, diffusers.models.attention_processor.PAGJointAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGJointAttnProcessor2_0, diffusers.models.attention_processor.FusedJointAttnProcessor2_0, diffusers.models.attention_processor.AllegroAttnProcessor2_0, diffusers.models.attention_processor.AuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FusedAuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.CogVideoXAttnProcessor2_0, diffusers.models.attention_processor.FusedCogVideoXAttnProcessor2_0, diffusers.models.attention_processor.XFormersAttnAddedKVProcessor, diffusers.models.attention_processor.XFormersAttnProcessor, diffusers.models.attention_processor.XLAFlashAttnProcessor2_0, diffusers.models.attention_processor.AttnProcessorNPU, diffusers.models.attention_processor.AttnProcessor2_0, diffusers.models.attention_processor.MochiVaeAttnProcessor2_0, diffusers.models.attention_processor.MochiAttnProcessor2_0, diffusers.models.attention_processor.StableAudioAttnProcessor2_0, diffusers.models.attention_processor.HunyuanAttnProcessor2_0, diffusers.models.attention_processor.FusedHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.LuminaAttnProcessor2_0, diffusers.models.attention_processor.FusedAttnProcessor2_0, diffusers.models.attention_processor.CustomDiffusionXFormersAttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor2_0, diffusers.models.attention_processor.SlicedAttnProcessor, diffusers.models.attention_processor.SlicedAttnAddedKVProcessor, diffusers.models.attention_processor.SanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGSanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySanaLinearAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleLinearAttention, diffusers.models.attention_processor.SanaMultiscaleAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleAttentionProjection, diffusers.models.attention_processor.IPAdapterAttnProcessor, diffusers.models.attention_processor.IPAdapterAttnProcessor2_0, diffusers.models.attention_processor.IPAdapterXFormersAttnProcessor, diffusers.models.attention_processor.SD3IPAdapterJointAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.LoRAAttnProcessor, diffusers.models.attention_processor.LoRAAttnProcessor2_0, diffusers.models.attention_processor.LoRAXFormersAttnProcessor, diffusers.models.attention_processor.LoRAAttnAddedKVProcessor]]] )
设置用于计算注意力的注意力处理器。