Diffusers 文档
CogVideoXTransformer3D模型
并获得增强的文档体验
开始使用
CogVideoXTransformer3D模型
清华大学和智谱AI在CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer中介绍了来自CogVideoX的用于3D数据的扩散Transformer模型。
该模型可以通过以下代码片段加载。
from diffusers import CogVideoXTransformer3DModel
transformer = CogVideoXTransformer3DModel.from_pretrained("THUDM/CogVideoX-2b", subfolder="transformer", torch_dtype=torch.float16).to("cuda")
CogVideoXTransformer3D模型
class diffusers.CogVideoXTransformer3DModel
< 源 >( num_attention_heads: int = 30 attention_head_dim: int = 64 in_channels: int = 16 out_channels: typing.Optional[int] = 16 flip_sin_to_cos: bool = True freq_shift: int = 0 time_embed_dim: int = 512 ofs_embed_dim: typing.Optional[int] = None text_embed_dim: int = 4096 num_layers: int = 30 dropout: float = 0.0 attention_bias: bool = True sample_width: int = 90 sample_height: int = 60 sample_frames: int = 49 patch_size: int = 2 patch_size_t: typing.Optional[int] = None temporal_compression_ratio: int = 4 max_text_seq_length: int = 226 activation_fn: str = 'gelu-approximate' timestep_activation_fn: str = 'silu' norm_elementwise_affine: bool = True norm_eps: float = 1e-05 spatial_interpolation_scale: float = 1.875 temporal_interpolation_scale: float = 1.0 use_rotary_positional_embeddings: bool = False use_learned_positional_embeddings: bool = False patch_bias: bool = True )
参数
- num_attention_heads (
int
, defaults to30
) — 用于多头注意力机制的头数。 - attention_head_dim (
int
, defaults to64
) — 每个注意力头中的通道数。 - in_channels (
int
, defaults to16
) — 输入中的通道数。 - out_channels (
int
, 可选, defaults to16
) — 输出中的通道数。 - flip_sin_to_cos (
bool
, defaults toTrue
) — 是否在时间嵌入中将sin翻转为cos。 - time_embed_dim (
int
, defaults to512
) — 时间步嵌入的输出维度。 - ofs_embed_dim (
int
, defaults to512
) — CogVideoX-5b-I2B 1.5版中使用的“ofs”嵌入的输出维度。 - text_embed_dim (
int
, defaults to4096
) — 文本编码器中文本嵌入的输入维度。 - num_layers (
int
, defaults to30
) — 要使用的Transformer块层数。 - dropout (
float
, defaults to0.0
) — 要使用的dropout概率。 - attention_bias (
bool
, defaults toTrue
) — 是否在注意力投影层中使用偏置。 - sample_width (
int
, defaults to90
) — 输入潜在的宽度。 - sample_height (
int
, defaults to60
) — 输入潜在的高度。 - sample_frames (
int
, defaults to49
) — 输入潜在的帧数。请注意,此参数最初错误地初始化为49而非13,因为CogVideoX在默认和推荐设置下一次性处理13个潜在帧,但为确保向后兼容性,无法更改为正确的值。要创建具有K个潜在帧的Transformer,此处应传递的正确值为:((K - 1) * temporal_compression_ratio + 1)。 - patch_size (
int
, defaults to2
) — 补丁嵌入层中使用的补丁大小。 - temporal_compression_ratio (
int
, defaults to4
) — 跨时间维度的压缩比。请参阅sample_frames
的文档。 - max_text_seq_length (
int
, defaults to226
) — 输入文本嵌入的最大序列长度。 - activation_fn (
str
, defaults to"gelu-approximate"
) — 前馈网络中使用的激活函数。 - timestep_activation_fn (
str
, defaults to"silu"
) — 生成时间步嵌入时使用的激活函数。 - norm_elementwise_affine (
bool
, defaults toTrue
) — 是否在归一化层中使用逐元素仿射。 - norm_eps (
float
, defaults to1e-5
) — 归一化层中使用的epsilon值。 - spatial_interpolation_scale (
float
, defaults to1.875
) — 在3D位置嵌入中应用于空间维度的缩放因子。 - temporal_interpolation_scale (
float
, defaults to1.0
) — 在3D位置嵌入中应用于时间维度的缩放因子。
在CogVideoX中用于视频类数据的Transformer模型。
设置注意力处理器
< 源 >( processor: typing.Union[diffusers.models.attention_processor.AttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor2_0, diffusers.models.attention_processor.JointAttnProcessor2_0, diffusers.models.attention_processor.PAGJointAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGJointAttnProcessor2_0, diffusers.models.attention_processor.FusedJointAttnProcessor2_0, diffusers.models.attention_processor.AllegroAttnProcessor2_0, diffusers.models.attention_processor.AuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FusedAuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.CogVideoXAttnProcessor2_0, diffusers.models.attention_processor.FusedCogVideoXAttnProcessor2_0, diffusers.models.attention_processor.XFormersAttnAddedKVProcessor, diffusers.models.attention_processor.XFormersAttnProcessor, diffusers.models.attention_processor.XLAFlashAttnProcessor2_0, diffusers.models.attention_processor.AttnProcessorNPU, diffusers.models.attention_processor.AttnProcessor2_0, diffusers.models.attention_processor.MochiVaeAttnProcessor2_0, diffusers.models.attention_processor.MochiAttnProcessor2_0, diffusers.models.attention_processor.StableAudioAttnProcessor2_0, diffusers.models.attention_processor.HunyuanAttnProcessor2_0, diffusers.models.attention_processor.FusedHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.LuminaAttnProcessor2_0, diffusers.models.attention_processor.FusedAttnProcessor2_0, diffusers.models.attention_processor.CustomDiffusionXFormersAttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor2_0, diffusers.models.attention_processor.SlicedAttnProcessor, diffusers.models.attention_processor.SlicedAttnAddedKVProcessor, diffusers.models.attention_processor.SanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGSanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySanaLinearAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleLinearAttention, diffusers.models.attention_processor.SanaMultiscaleAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleAttentionProjection, diffusers.models.attention_processor.IPAdapterAttnProcessor, diffusers.models.attention_processor.IPAdapterAttnProcessor2_0, diffusers.models.attention_processor.IPAdapterXFormersAttnProcessor, diffusers.models.attention_processor.SD3IPAdapterJointAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.LoRAAttnProcessor, diffusers.models.attention_processor.LoRAAttnProcessor2_0, diffusers.models.attention_processor.LoRAXFormersAttnProcessor, diffusers.models.attention_processor.LoRAAttnAddedKVProcessor, typing.Dict[str, typing.Union[diffusers.models.attention_processor.AttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor2_0, diffusers.models.attention_processor.JointAttnProcessor2_0, diffusers.models.attention_processor.PAGJointAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGJointAttnProcessor2_0, diffusers.models.attention_processor.FusedJointAttnProcessor2_0, diffusers.models.attention_processor.AllegroAttnProcessor2_0, diffusers.models.attention_processor.AuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FusedAuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.CogVideoXAttnProcessor2_0, diffusers.models.attention_processor.FusedCogVideoXAttnProcessor2_0, diffusers.models.attention_processor.XFormersAttnAddedKVProcessor, diffusers.models.attention_processor.XFormersAttnProcessor, diffusers.models.attention_processor.XLAFlashAttnProcessor2_0, diffusers.models.attention_processor.AttnProcessorNPU, diffusers.models.attention_processor.AttnProcessor2_0, diffusers.models.attention_processor.MochiVaeAttnProcessor2_0, diffusers.models.attention_processor.MochiAttnProcessor2_0, diffusers.models.attention_processor.StableAudioAttnProcessor2_0, diffusers.models.attention_processor.HunyuanAttnProcessor2_0, diffusers.models.attention_processor.FusedHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.LuminaAttnProcessor2_0, diffusers.models.attention_processor.FusedAttnProcessor2_0, diffusers.models.attention_processor.CustomDiffusionXFormersAttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor2_0, diffusers.models.attention_processor.SlicedAttnProcessor, diffusers.models.attention_processor.SlicedAttnAddedKVProcessor, diffusers.models.attention_processor.SanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGSanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySanaLinearAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleLinearAttention, diffusers.models.attention_processor.SanaMultiscaleAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleAttentionProjection, diffusers.models.attention_processor.IPAdapterAttnProcessor, diffusers.models.attention_processor.IPAdapterAttnProcessor2_0, diffusers.models.attention_processor.IPAdapterXFormersAttnProcessor, diffusers.models.attention_processor.SD3IPAdapterJointAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.LoRAAttnProcessor, diffusers.models.attention_processor.LoRAAttnProcessor2_0, diffusers.models.attention_processor.LoRAXFormersAttnProcessor, diffusers.models.attention_processor.LoRAAttnAddedKVProcessor]]] )
设置用于计算注意力的注意力处理器。
Transformer2DModelOutput
class diffusers.models.modeling_outputs.Transformer2DModelOutput
< 源 >( sample: torch.Tensor )
参数
- sample (
torch.Tensor
, 形状为(batch_size, num_channels, height, width)
;如果Transformer2DModel是离散的,则为(batch size, num_vector_embeds - 1, num_latent_pixels)
) — 在encoder_hidden_states
输入条件下输出的隐藏状态。如果是离散的,则返回未去噪的潜在像素的概率分布。
Transformer2DModel 的输出。