Diffusers 文档

StableAudioDiTModel

Hugging Face's logo
加入 Hugging Face 社区

并获取增强的文档体验

开始使用

StableAudioDiTModel

一个来自 Stable Audio Open 的音频波形的 Transformer 模型。

StableAudioDiTModel

class diffusers.StableAudioDiTModel

< >

( sample_size: int = 1024 in_channels: int = 64 num_layers: int = 24 attention_head_dim: int = 64 num_attention_heads: int = 24 num_key_value_attention_heads: int = 12 out_channels: int = 64 cross_attention_dim: int = 768 time_proj_dim: int = 256 global_states_input_dim: int = 1536 cross_attention_input_dim: int = 768 )

参数

  • sample_size ( int, 可选, 默认为 1024) — 输入样本的大小。
  • in_channels (int, 可选, 默认为 64) — 输入中的通道数。
  • num_layers (int, 可选, 默认为 24) — 要使用的 Transformer 块的层数。
  • attention_head_dim (int, 可选, 默认为 64) — 每个 head 中的通道数。
  • num_attention_heads (int, 可选, 默认为 24) — 用于查询状态的 head 数量。
  • num_key_value_attention_heads (int, 可选, 默认为 12) — 用于键和值状态的注意力头的数量。
  • out_channels (int, 默认为 64) — 输出通道的数量。
  • cross_attention_dim ( int, 可选, 默认为 768) — 交叉注意力投影的维度。
  • time_proj_dim ( int, 可选, 默认为 256) — 时间步内部投影的维度。
  • global_states_input_dim ( int, 可选, 默认为 1536) — 全局隐藏状态投影的输入维度。
  • cross_attention_input_dim ( int, 可选, 默认为 768) — 交叉注意力投影的输入维度

Stable Audio 中引入的扩散 Transformer 模型。

参考链接: https://github.com/Stability-AI/stable-audio-tools

前向传播

< >

( hidden_states: FloatTensor timestep: LongTensor = None encoder_hidden_states: FloatTensor = None global_hidden_states: FloatTensor = None rotary_embedding: FloatTensor = None return_dict: bool = True attention_mask: typing.Optional[torch.LongTensor] = None encoder_attention_mask: typing.Optional[torch.LongTensor] = None )

参数

  • hidden_states (torch.FloatTensor,形状为 (batch size, in_channels, sequence_len)) — 输入 hidden_states
  • timestep ( torch.LongTensor) — 用于指示去噪步骤。
  • encoder_hidden_states (torch.FloatTensor,形状为 (batch size, encoder_sequence_len, cross_attention_input_dim)) — 条件嵌入(从输入条件(如提示)计算出的嵌入),供使用。
  • global_hidden_states (torch.FloatTensor,形状为 (batch size, global_sequence_len, global_states_input_dim)) — 将预先添加到隐藏状态的全局嵌入。
  • rotary_embedding (torch.Tensor) — 在注意力计算期间应用于查询和键张量的旋转嵌入。
  • return_dict (bool, 可选, 默认为 True) — 是否返回 ~models.transformer_2d.Transformer2DModelOutput 而不是普通元组。
  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_len), 可选) — 掩码,用于避免对填充标记索引执行注意力机制,通过将两个文本编码器的注意力掩码连接在一起形成。 掩码值在 [0, 1] 中选择:

    • 1 表示未被掩码的标记,
    • 0 表示被掩码的标记。
  • encoder_attention_mask (torch.Tensor,形状为 (batch_size, sequence_len), 可选) — 掩码,用于避免对填充标记交叉注意力索引执行注意力机制,通过将两个文本编码器的注意力掩码连接在一起形成。 掩码值在 [0, 1] 中选择:

    • 1 表示未被掩码的标记,
    • 0 表示被掩码的标记。

StableAudioDiTModel 的前向传播方法。

set_attn_processor

< >

( processor: typing.Union[diffusers.models.attention_processor.AttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor2_0, diffusers.models.attention_processor.JointAttnProcessor2_0, diffusers.models.attention_processor.PAGJointAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGJointAttnProcessor2_0, diffusers.models.attention_processor.FusedJointAttnProcessor2_0, diffusers.models.attention_processor.AllegroAttnProcessor2_0, diffusers.models.attention_processor.AuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FusedAuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.CogVideoXAttnProcessor2_0, diffusers.models.attention_processor.FusedCogVideoXAttnProcessor2_0, diffusers.models.attention_processor.XFormersAttnAddedKVProcessor, diffusers.models.attention_processor.XFormersAttnProcessor, diffusers.models.attention_processor.XLAFlashAttnProcessor2_0, diffusers.models.attention_processor.AttnProcessorNPU, diffusers.models.attention_processor.AttnProcessor2_0, diffusers.models.attention_processor.MochiVaeAttnProcessor2_0, diffusers.models.attention_processor.MochiAttnProcessor2_0, diffusers.models.attention_processor.StableAudioAttnProcessor2_0, diffusers.models.attention_processor.HunyuanAttnProcessor2_0, diffusers.models.attention_processor.FusedHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.LuminaAttnProcessor2_0, diffusers.models.attention_processor.FusedAttnProcessor2_0, diffusers.models.attention_processor.CustomDiffusionXFormersAttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor2_0, diffusers.models.attention_processor.SlicedAttnProcessor, diffusers.models.attention_processor.SlicedAttnAddedKVProcessor, diffusers.models.attention_processor.SanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGSanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySanaLinearAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleLinearAttention, diffusers.models.attention_processor.SanaMultiscaleAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleAttentionProjection, diffusers.models.attention_processor.IPAdapterAttnProcessor, diffusers.models.attention_processor.IPAdapterAttnProcessor2_0, diffusers.models.attention_processor.IPAdapterXFormersAttnProcessor, diffusers.models.attention_processor.SD3IPAdapterJointAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.LoRAAttnProcessor, diffusers.models.attention_processor.LoRAAttnProcessor2_0, diffusers.models.attention_processor.LoRAXFormersAttnProcessor, diffusers.models.attention_processor.LoRAAttnAddedKVProcessor, typing.Dict[str, typing.Union[diffusers.models.attention_processor.AttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor2_0, diffusers.models.attention_processor.JointAttnProcessor2_0, diffusers.models.attention_processor.PAGJointAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGJointAttnProcessor2_0, diffusers.models.attention_processor.FusedJointAttnProcessor2_0, diffusers.models.attention_processor.AllegroAttnProcessor2_0, diffusers.models.attention_processor.AuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FusedAuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.CogVideoXAttnProcessor2_0, diffusers.models.attention_processor.FusedCogVideoXAttnProcessor2_0, diffusers.models.attention_processor.XFormersAttnAddedKVProcessor, diffusers.models.attention_processor.XFormersAttnProcessor, diffusers.models.attention_processor.XLAFlashAttnProcessor2_0, diffusers.models.attention_processor.AttnProcessorNPU, diffusers.models.attention_processor.AttnProcessor2_0, diffusers.models.attention_processor.MochiVaeAttnProcessor2_0, diffusers.models.attention_processor.MochiAttnProcessor2_0, diffusers.models.attention_processor.StableAudioAttnProcessor2_0, diffusers.models.attention_processor.HunyuanAttnProcessor2_0, diffusers.models.attention_processor.FusedHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.LuminaAttnProcessor2_0, diffusers.models.attention_processor.FusedAttnProcessor2_0, diffusers.models.attention_processor.CustomDiffusionXFormersAttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor2_0, diffusers.models.attention_processor.SlicedAttnProcessor, diffusers.models.attention_processor.SlicedAttnAddedKVProcessor, diffusers.models.attention_processor.SanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGSanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySanaLinearAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleLinearAttention, diffusers.models.attention_processor.SanaMultiscaleAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleAttentionProjection, diffusers.models.attention_processor.IPAdapterAttnProcessor, diffusers.models.attention_processor.IPAdapterAttnProcessor2_0, diffusers.models.attention_processor.IPAdapterXFormersAttnProcessor, diffusers.models.attention_processor.SD3IPAdapterJointAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.LoRAAttnProcessor, diffusers.models.attention_processor.LoRAAttnProcessor2_0, diffusers.models.attention_processor.LoRAXFormersAttnProcessor, diffusers.models.attention_processor.LoRAAttnAddedKVProcessor]]] )

参数

  • processor (AttentionProcessor 的字典或仅 AttentionProcessor) — 实例化的处理器类或处理器类字典,将设置为所有 Attention 层的处理器。

    如果 processor 是一个字典,则键需要定义到相应交叉注意力处理器的路径。强烈建议在设置可训练的注意力处理器时使用此方法。

设置用于计算注意力的注意力处理器。

set_default_attn_processor

< >

( )

禁用自定义注意力处理器并设置默认注意力实现。

< > 在 GitHub 上更新