Diffusers 文档

AuraFlowTransformer2DModel

Hugging Face's logo
加入 Hugging Face 社区

并获取增强的文档体验

开始使用

AuraFlowTransformer2DModel

来自 AuraFlow 的类图像数据的 Transformer 模型。

AuraFlowTransformer2DModel

class diffusers.AuraFlowTransformer2DModel

< >

( sample_size: int = 64 patch_size: int = 2 in_channels: int = 4 num_mmdit_layers: int = 4 num_single_dit_layers: int = 32 attention_head_dim: int = 256 num_attention_heads: int = 12 joint_attention_dim: int = 2048 caption_projection_dim: int = 3072 out_channels: int = 4 pos_embed_max_size: int = 1024 )

参数

  • sample_size (int) — 潜在图像的宽度。这在训练期间是固定的,因为它用于学习位置嵌入的数量。
  • patch_size (int) — 用于将输入数据转换为小块的块大小。
  • in_channels (int, 可选,默认为 16) — 输入中的通道数。
  • num_mmdit_layers (int, 可选,默认为 4) — 要使用的 MMDiT Transformer 块的层数。
  • num_single_dit_layers (int, 可选,默认为 4) — 要使用的 Transformer 块的层数。这些块使用连接的图像和文本表示。
  • attention_head_dim (int, 可选,默认为 64) — 每个注意力头的通道数。
  • num_attention_heads (int, 可选,默认为 18) — 用于多头注意力的头数。
  • joint_attention_dim (int, 可选) — 要使用的 encoder_hidden_states 维度数。
  • caption_projection_dim (int) — 投影 encoder_hidden_states 时要使用的维度数。
  • out_channels (int, 默认为 16) — 输出通道数。
  • pos_embed_max_size (int, 默认为 4096) — 从图像潜在空间嵌入的最大位置数。

AuraFlow 中引入的 2D Transformer 模型 (https://blog.fal.ai/auraflow/)。

fuse_qkv_projections

< >

( )

启用融合 QKV 投影。对于自注意力模块,所有投影矩阵(即,查询、键、值)都融合在一起。对于交叉注意力模块,键和值投影矩阵被融合。

此 API 是 🧪 实验性的。

set_attn_processor

< >

( processor: typing.Union[diffusers.models.attention_processor.AttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor2_0, diffusers.models.attention_processor.JointAttnProcessor2_0, diffusers.models.attention_processor.PAGJointAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGJointAttnProcessor2_0, diffusers.models.attention_processor.FusedJointAttnProcessor2_0, diffusers.models.attention_processor.AllegroAttnProcessor2_0, diffusers.models.attention_processor.AuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FusedAuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.CogVideoXAttnProcessor2_0, diffusers.models.attention_processor.FusedCogVideoXAttnProcessor2_0, diffusers.models.attention_processor.XFormersAttnAddedKVProcessor, diffusers.models.attention_processor.XFormersAttnProcessor, diffusers.models.attention_processor.XLAFlashAttnProcessor2_0, diffusers.models.attention_processor.AttnProcessorNPU, diffusers.models.attention_processor.AttnProcessor2_0, diffusers.models.attention_processor.MochiVaeAttnProcessor2_0, diffusers.models.attention_processor.MochiAttnProcessor2_0, diffusers.models.attention_processor.StableAudioAttnProcessor2_0, diffusers.models.attention_processor.HunyuanAttnProcessor2_0, diffusers.models.attention_processor.FusedHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.LuminaAttnProcessor2_0, diffusers.models.attention_processor.FusedAttnProcessor2_0, diffusers.models.attention_processor.CustomDiffusionXFormersAttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor2_0, diffusers.models.attention_processor.SlicedAttnProcessor, diffusers.models.attention_processor.SlicedAttnAddedKVProcessor, diffusers.models.attention_processor.SanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGSanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySanaLinearAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleLinearAttention, diffusers.models.attention_processor.SanaMultiscaleAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleAttentionProjection, diffusers.models.attention_processor.IPAdapterAttnProcessor, diffusers.models.attention_processor.IPAdapterAttnProcessor2_0, diffusers.models.attention_processor.IPAdapterXFormersAttnProcessor, diffusers.models.attention_processor.SD3IPAdapterJointAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.LoRAAttnProcessor, diffusers.models.attention_processor.LoRAAttnProcessor2_0, diffusers.models.attention_processor.LoRAXFormersAttnProcessor, diffusers.models.attention_processor.LoRAAttnAddedKVProcessor]]] )

参数

  • processor (AttentionProcessordict 或仅 AttentionProcessor) — 实例化的处理器类或处理器类字典,它将被设置为所有 Attention 层的处理器。

    如果 processor 是一个 dict,则键需要定义到相应交叉注意力处理器的路径。强烈建议在设置可训练的注意力处理器时使用。

设置用于计算注意力的注意力处理器。

unfuse_qkv_projections

< >

( )

如果已启用,则禁用融合 QKV 投影。

此 API 是 🧪 实验性的。

< > 在 GitHub 上更新