Diffusers 文档
AuraFlowTransformer2DModel
并获取增强的文档体验
开始使用
AuraFlowTransformer2DModel
来自 AuraFlow 的类图像数据的 Transformer 模型。
AuraFlowTransformer2DModel
class diffusers.AuraFlowTransformer2DModel
< source >( sample_size: int = 64 patch_size: int = 2 in_channels: int = 4 num_mmdit_layers: int = 4 num_single_dit_layers: int = 32 attention_head_dim: int = 256 num_attention_heads: int = 12 joint_attention_dim: int = 2048 caption_projection_dim: int = 3072 out_channels: int = 4 pos_embed_max_size: int = 1024 )
参数
- sample_size (
int
) — 潜在图像的宽度。这在训练期间是固定的,因为它用于学习位置嵌入的数量。 - patch_size (
int
) — 用于将输入数据转换为小块的块大小。 - in_channels (
int
, 可选,默认为 16) — 输入中的通道数。 - num_mmdit_layers (
int
, 可选,默认为 4) — 要使用的 MMDiT Transformer 块的层数。 - num_single_dit_layers (
int
, 可选,默认为 4) — 要使用的 Transformer 块的层数。这些块使用连接的图像和文本表示。 - attention_head_dim (
int
, 可选,默认为 64) — 每个注意力头的通道数。 - num_attention_heads (
int
, 可选,默认为 18) — 用于多头注意力的头数。 - joint_attention_dim (
int
, 可选) — 要使用的encoder_hidden_states
维度数。 - caption_projection_dim (
int
) — 投影encoder_hidden_states
时要使用的维度数。 - out_channels (
int
, 默认为 16) — 输出通道数。 - pos_embed_max_size (
int
, 默认为 4096) — 从图像潜在空间嵌入的最大位置数。
AuraFlow 中引入的 2D Transformer 模型 (https://blog.fal.ai/auraflow/)。
启用融合 QKV 投影。对于自注意力模块,所有投影矩阵(即,查询、键、值)都融合在一起。对于交叉注意力模块,键和值投影矩阵被融合。
此 API 是 🧪 实验性的。
set_attn_processor
< source >( processor: typing.Union[diffusers.models.attention_processor.AttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor2_0, diffusers.models.attention_processor.JointAttnProcessor2_0, diffusers.models.attention_processor.PAGJointAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGJointAttnProcessor2_0, diffusers.models.attention_processor.FusedJointAttnProcessor2_0, diffusers.models.attention_processor.AllegroAttnProcessor2_0, diffusers.models.attention_processor.AuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FusedAuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.CogVideoXAttnProcessor2_0, diffusers.models.attention_processor.FusedCogVideoXAttnProcessor2_0, diffusers.models.attention_processor.XFormersAttnAddedKVProcessor, diffusers.models.attention_processor.XFormersAttnProcessor, diffusers.models.attention_processor.XLAFlashAttnProcessor2_0, diffusers.models.attention_processor.AttnProcessorNPU, diffusers.models.attention_processor.AttnProcessor2_0, diffusers.models.attention_processor.MochiVaeAttnProcessor2_0, diffusers.models.attention_processor.MochiAttnProcessor2_0, diffusers.models.attention_processor.StableAudioAttnProcessor2_0, diffusers.models.attention_processor.HunyuanAttnProcessor2_0, diffusers.models.attention_processor.FusedHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.LuminaAttnProcessor2_0, diffusers.models.attention_processor.FusedAttnProcessor2_0, diffusers.models.attention_processor.CustomDiffusionXFormersAttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor2_0, diffusers.models.attention_processor.SlicedAttnProcessor, diffusers.models.attention_processor.SlicedAttnAddedKVProcessor, diffusers.models.attention_processor.SanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGSanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySanaLinearAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleLinearAttention, diffusers.models.attention_processor.SanaMultiscaleAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleAttentionProjection, diffusers.models.attention_processor.IPAdapterAttnProcessor, diffusers.models.attention_processor.IPAdapterAttnProcessor2_0, diffusers.models.attention_processor.IPAdapterXFormersAttnProcessor, diffusers.models.attention_processor.SD3IPAdapterJointAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.LoRAAttnProcessor, diffusers.models.attention_processor.LoRAAttnProcessor2_0, diffusers.models.attention_processor.LoRAXFormersAttnProcessor, diffusers.models.attention_processor.LoRAAttnAddedKVProcessor]]] )
设置用于计算注意力的注意力处理器。