Diffusers 文档
PixArtTransformer2DModel
并获得增强的文档体验
开始使用
PixArtTransformer2DModel
来自 PixArt-Alpha 和 PixArt-Sigma 的图像数据 Transformer 模型。
PixArtTransformer2DModel
class diffusers.PixArtTransformer2DModel
< 来源 >( num_attention_heads: int = 16 attention_head_dim: int = 72 in_channels: int = 4 out_channels: typing.Optional[int] = 8 num_layers: int = 28 dropout: float = 0.0 norm_num_groups: int = 32 cross_attention_dim: typing.Optional[int] = 1152 attention_bias: bool = True sample_size: int = 128 patch_size: int = 2 activation_fn: str = 'gelu-approximate' num_embeds_ada_norm: typing.Optional[int] = 1000 upcast_attention: bool = False norm_type: str = 'ada_norm_single' norm_elementwise_affine: bool = False norm_eps: float = 1e-06 interpolation_scale: typing.Optional[int] = None use_additional_conditions: typing.Optional[bool] = None caption_channels: typing.Optional[int] = None attention_type: typing.Optional[str] = 'default' )
参数
- num_attention_heads (int, 可选,默认为 16) — 用于多头注意力机制的头数。
- attention_head_dim (int, 可选,默认为 72) — 每个头部的通道数。
- in_channels (int, 默认为 4) — 输入通道数。
- out_channels (int, 可选) — 输出通道数。如果输出通道数与输入通道数不同,请指定此参数。
- num_layers (int, 可选,默认为 28) — 要使用的 Transformer 块层数。
- dropout (float, 可选,默认为 0.0) — Transformer 块中要使用的 dropout 概率。
- norm_num_groups (int, 可选,默认为 32) — Transformer 块中组归一化的组数。
- cross_attention_dim (int, 可选) — 交叉注意力层的维度,通常与编码器的隐藏维度匹配。
- attention_bias (bool, 可选,默认为 True) — 配置 Transformer 块的注意力机制是否包含偏置参数。
- sample_size (int, 默认为 128) — 潜在图像的宽度。此参数在训练期间是固定的。
- patch_size (int, 默认为 2) — 模型处理的块大小,与处理非序列数据的架构相关。
- activation_fn (str, 可选,默认为 “gelu-approximate”) — Transformer 块内部前馈网络中使用的激活函数。
- num_embeds_ada_norm (int, 可选,默认为 1000) — AdaLayerNorm 的嵌入数量,在训练期间固定,并影响推理期间的最大去噪步数。
- upcast_attention (bool, 可选,默认为 False) — 如果为 True,则向上转换注意力机制维度以可能提高性能。
- norm_type (str, 可选,默认为 “ada_norm_zero”) — 指定使用的归一化类型,可以是 “ada_norm_zero”。
- norm_elementwise_affine (bool, 可选,默认为 False) — 如果为 True,则在归一化层中启用元素级仿射参数。
- norm_eps (float, 可选,默认为 1e-6) — 添加到归一化层分母中的小常数,以防止除以零。
- interpolation_scale (int, 可选) — 插值位置嵌入时使用的缩放因子。
- use_additional_conditions (bool, 可选) — 是否使用附加条件作为输入。
- attention_type (str, 可选,默认为 “default”) — 使用的注意力机制类型。
- caption_channels (int, 可选,默认为 None) — 用于投影标题嵌入的通道数。
- use_linear_projection (bool, 可选,默认为 False) — 已弃用参数。将在未来版本中移除。
- num_vector_embeds (bool, 可选,默认为 False) — 已弃用参数。将在未来版本中移除。
PixArt 模型家族中引入的 2D Transformer 模型(https://huggingface.ac.cn/papers/2310.00426,https://huggingface.ac.cn/papers/2403.04692)。
forward
< 来源 >( hidden_states: Tensor encoder_hidden_states: typing.Optional[torch.Tensor] = None timestep: typing.Optional[torch.LongTensor] = None added_cond_kwargs: typing.Dict[str, torch.Tensor] = None cross_attention_kwargs: typing.Dict[str, typing.Any] = None attention_mask: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None return_dict: bool = True )
参数
- hidden_states (
torch.FloatTensor
,形状为(batch_size, channel, height, width)
) — 输入hidden_states
。 - encoder_hidden_states (
torch.FloatTensor
,形状为(batch_size, sequence_len, embed_dims)
,可选) — 交叉注意力层的条件嵌入。如果未给定,交叉注意力默认为自注意力。 - timestep (
torch.LongTensor
, 可选) — 用于指示去噪步长。可选的 timestep 将作为嵌入应用于AdaLayerNorm
。 - added_cond_kwargs — (
Dict[str, Any]
, 可选): 用作输入的附加条件。 - cross_attention_kwargs (
Dict[str, Any]
, 可选) — 如果指定,则将此 kwargs 字典传递给 diffusers.models.attention_processor 中定义的self.processor
的AttentionProcessor
。 - attention_mask (
torch.Tensor
, 可选) — 形状为(batch, key_tokens)
的注意力掩码应用于encoder_hidden_states
。如果为1
则保留掩码,否则如果为0
则丢弃。掩码将转换为偏置,这将为对应于“丢弃”token 的注意力分数添加大的负值。 - encoder_attention_mask (
torch.Tensor
, 可选) — 应用于encoder_hidden_states
的交叉注意力掩码。支持两种格式:- 掩码
(batch, sequence_length)
True = 保留,False = 丢弃。 - 偏置
(batch, 1, sequence_length)
0 = 保留,-10000 = 丢弃。
如果
ndim == 2
:将被解释为掩码,然后转换为与上述格式一致的偏置。此偏置将添加到交叉注意力分数中。 - 掩码
- return_dict (
bool
, 可选, 默认为True
) — 是否返回 UNet2DConditionOutput 而不是普通元组。
PixArtTransformer2DModel forward 方法。
设置注意力处理器
< 来源 >( processor: typing.Union[diffusers.models.attention_processor.AttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor2_0, diffusers.models.attention_processor.JointAttnProcessor2_0, diffusers.models.attention_processor.PAGJointAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGJointAttnProcessor2_0, diffusers.models.attention_processor.FusedJointAttnProcessor2_0, diffusers.models.attention_processor.AllegroAttnProcessor2_0, diffusers.models.attention_processor.AuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FusedAuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.CogVideoXAttnProcessor2_0, diffusers.models.attention_processor.FusedCogVideoXAttnProcessor2_0, diffusers.models.attention_processor.XFormersAttnAddedKVProcessor, diffusers.models.attention_processor.XFormersAttnProcessor, diffusers.models.attention_processor.XLAFlashAttnProcessor2_0, diffusers.models.attention_processor.AttnProcessorNPU, diffusers.models.attention_processor.AttnProcessor2_0, diffusers.models.attention_processor.MochiVaeAttnProcessor2_0, diffusers.models.attention_processor.MochiAttnProcessor2_0, diffusers.models.attention_processor.StableAudioAttnProcessor2_0, diffusers.models.attention_processor.HunyuanAttnProcessor2_0, diffusers.models.attention_processor.FusedHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.LuminaAttnProcessor2_0, diffusers.models.attention_processor.FusedAttnProcessor2_0, diffusers.models.attention_processor.CustomDiffusionXFormersAttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor2_0, diffusers.models.attention_processor.SlicedAttnProcessor, diffusers.models.attention_processor.SlicedAttnAddedKVProcessor, diffusers.models.attention_processor.SanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGSanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySanaLinearAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleLinearAttention, diffusers.models.attention_processor.SanaMultiscaleAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleAttentionProjection, diffusers.models.attention_processor.IPAdapterAttnProcessor, diffusers.models.attention_processor.IPAdapterAttnProcessor2_0, diffusers.models.attention_processor.IPAdapterXFormersAttnProcessor, diffusers.models.attention_processor.SD3IPAdapterJointAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.LoRAAttnProcessor, diffusers.models.attention_processor.LoRAAttnProcessor2_0, diffusers.models.attention_processor.LoRAXFormersAttnProcessor, diffusers.models.attention_processor.LoRAAttnAddedKVProcessor, typing.Dict[str, typing.Union[diffusers.models.attention_processor.AttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor2_0, diffusers.models.attention_processor.JointAttnProcessor2_0, diffusers.models.attention_processor.PAGJointAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGJointAttnProcessor2_0, diffusers.models.attention_processor.FusedJointAttnProcessor2_0, diffusers.models.attention_processor.AllegroAttnProcessor2_0, diffusers.models.attention_processor.AuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FusedAuraFlowAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0, diffusers.models.attention_processor.FluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0, diffusers.models.attention_processor.FusedFluxAttnProcessor2_0_NPU, diffusers.models.attention_processor.CogVideoXAttnProcessor2_0, diffusers.models.attention_processor.FusedCogVideoXAttnProcessor2_0, diffusers.models.attention_processor.XFormersAttnAddedKVProcessor, diffusers.models.attention_processor.XFormersAttnProcessor, diffusers.models.attention_processor.XLAFlashAttnProcessor2_0, diffusers.models.attention_processor.AttnProcessorNPU, diffusers.models.attention_processor.AttnProcessor2_0, diffusers.models.attention_processor.MochiVaeAttnProcessor2_0, diffusers.models.attention_processor.MochiAttnProcessor2_0, diffusers.models.attention_processor.StableAudioAttnProcessor2_0, diffusers.models.attention_processor.HunyuanAttnProcessor2_0, diffusers.models.attention_processor.FusedHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGHunyuanAttnProcessor2_0, diffusers.models.attention_processor.LuminaAttnProcessor2_0, diffusers.models.attention_processor.FusedAttnProcessor2_0, diffusers.models.attention_processor.CustomDiffusionXFormersAttnProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor2_0, diffusers.models.attention_processor.SlicedAttnProcessor, diffusers.models.attention_processor.SlicedAttnAddedKVProcessor, diffusers.models.attention_processor.SanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGSanaLinearAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySanaLinearAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleLinearAttention, diffusers.models.attention_processor.SanaMultiscaleAttnProcessor2_0, diffusers.models.attention_processor.SanaMultiscaleAttentionProjection, diffusers.models.attention_processor.IPAdapterAttnProcessor, diffusers.models.attention_processor.IPAdapterAttnProcessor2_0, diffusers.models.attention_processor.IPAdapterXFormersAttnProcessor, diffusers.models.attention_processor.SD3IPAdapterJointAttnProcessor2_0, diffusers.models.attention_processor.PAGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.PAGCFGIdentitySelfAttnProcessor2_0, diffusers.models.attention_processor.LoRAAttnProcessor, diffusers.models.attention_processor.LoRAAttnProcessor2_0, diffusers.models.attention_processor.LoRAXFormersAttnProcessor, diffusers.models.attention_processor.LoRAAttnAddedKVProcessor]]] )
设置用于计算注意力的注意力处理器。
禁用自定义注意力处理器并设置默认注意力实现。
可以直接使用 AttnProcessor()
,因为 PixArt 在默认模型中不包含任何特殊的注意力处理器。